When 0.514 g of biphenyl (C12H10) undergoes combustion in a bomb calorimeter, the temperature rises from 25.8 C to 29.4 C. Find ⌂E rxn for the combustion of biphenyl in kJ/mol biphenyl. The heat capacity of the bomb calorimeter, determined in a separate experiment, is 5.86 kJ/ C.
<span>The answer is - 6.30 * 10^3 kJ/mol
</span>
Answer:
The volume of the gas is determined, which will allow you to calculate the temperature.
Explanation:
According to Charles law; the volume of a given mass of an ideal gas is directly proportional to its temperature at constant pressure.
This implies that, when the volume of an ideal gas is measured at constant pressure, the temperature of the ideal gas can be calculated from it according to Charles law.
Hence in the Ideal Gas Law lab, the temperature of an ideal gas is measured by determining the volume of the ideal gas.
Answer:
97 J
Explanation:
Step 1: Given data
- Mass of the sample (m): 12 kg
- Specific heat capacity (c): 0.231 J/kg.°C (this can also be expressed as 0.231 J/kg.K)
- Initial temperature: 45 K
Step 2: Calculate the temperature change
ΔT = 80 K - 45 K = 35 K
Step 3: Calculate the heat required (Q)
We will use the following expression.
Q = c × m × ΔT
Q = 0.231 J/kg.K × 12 kg × 35 K = 97 J
Answer:
oceans is the answer that I got
A.a low basket with plastic liner