Here ya go if you need the link we’re I found this answer key https://studylib.net/doc/8708211/exam-2---chemistry
Freeze drying<span> (or lyophilization) removes water from the ice cream by lowering the </span>air pressure<span> to a point where ice sublimates from a </span>solid<span> to a </span>gas<span>. The ice cream is placed in a </span>vacuum chamber<span> and frozen until the water </span>crystallizes<span>. The air pressure is lowered, creating a partial vacuum, forcing air out of the chamber; next heat is applied, </span>sublimating<span> the ice; finally a freezing coil traps the vaporized water. This process continues for hours, resulting in a freeze-dried ice cream slice. </span>
Its 4 dude i did this already
Answer:
In the final solution, the concentration of sucrose is 0.126 M
Explanation:
Hi there!
The number of moles of solute in the volume taken from the more concentrated solution will be equal to the number of moles of solute in the diluted solution. Then, the concentration of the first solution can be calculated using the following equation:
Ci · Vi = Cf · Vf
Where:
Ci = concentration of the original solution
Vi = volume of the solution taken to prepare the more diluted solution.
Cf = concentration of the more diluted solution.
Vf = volume of the more diluted solution.
For the first dillution:
26.6 ml · 2.50 M = 50.0 ml · Cf
Cf = 26.6 ml · 2.50 M / 50.0 ml
Cf = 1.33 M
For the second dilution:
16.0 ml · 1.33 M = 45.0 ml · Cf
Cf = 16.0 ml · 1.33 M / 45.0 ml
Cf = 0.473 M
For the third dilution:
20.0 ml · 0.473 M = 75.0 ml · Cf
Cf = 20.0 ml · 0.473 M / 75.0 ml
Cf = 0.126 M
In the final solution, the concentration of sucrose is 0.126 M
From the reaction between Cu and HNO₃, the formed gas is NO₂ instead of NO₃. Hence the correct balanced equation would be,
Cu(s) + 4HNO₃(aq) → Cu(NO₃)₂(aq) + 2NO₂(g) + 2H₂O<span>(l)
Here, Cu goes to </span>Cu(NO₃)₂ by changing its oxidation number from 0 to +2 while NO₃⁻ goes to NO₂ by reducing its oxidation state from +5 to +4 . Hence Cu is oxidized by HNO₃ in the reaction.