Answer:
The answer to your question is:
Explanation:
Data
mass = 4.33 kg
E = 41.7 J
v = ?
Formula
Ke = (1/2)mv²
Clear v from the equation
v = √2ke/m
Substitution
v = √2(41.7)/4.33
v = 19.26 m/s Result
Answer:
The metabolic power for starting flight=134.8W/kg
Explanation:
We are given that
Mass of starling, m=89 g=89/1000=0.089 kg
1 kg=1000 g
Power, P=12 W
Speed, v=11 m/s
We have to find the metabolic power for starting flight.
We know that
Metabolic power for starting flight=
Using the formula
Metabolic power for starting flight=
Metabolic power for starting flight=134.8W/kg
Hence, the metabolic power for starting flight=134.8W/kg
Answer:
this description is valid for mediadle displacement, bone is an acceptable description
Explanation:
The description of a person's position must be done with a position vector. These vectors must have magnitude, a given direction and a starting point.
In the description this has a starting point corner NO of pine and 675.
Each displacement occurs with respect to the previous one, indicating the magnitude of the displacement and its direction.
After analyzing this description is valid for mediadle displacement, bone is an acceptable description
Answer:
The correct answer is B
Explanation:
Let's calculate the electric field using Gauss's law, which states that the electric field flow is equal to the charge faced by the dielectric permittivity
Φ
= ∫ E. dA =
/ ε₀
For this case we create a Gaussian surface that is a sphere. We can see that the two of the sphere and the field lines from the spherical shell grant in the direction whereby the scalar product is reduced to the ordinary product
∫ E dA =
/ ε₀
The area of a sphere is
A = 4π r²
E 4π r² =
/ ε₀
E = (1 /4πε₀
) q / r²
Having the solution of the problem let's analyze the points:
A ) r = 3R / 4 = 0.75 R.
In this case there is no charge inside the Gaussian surface therefore the electric field is zero
E = 0
B) r = 5R / 4 = 1.25R
In this case the entire charge is inside the Gaussian surface, the field is
E = (1 /4πε₀
) Q / (1.25R)²
E = (1 /4πε₀
) Q / R2 1 / 1.56²
E₀ = (1 /4π ε₀
) Q / R²
= Eo /1.56
²
= 0.41 Eo
C) r = 2R
All charge inside is inside the Gaussian surface
=(1 /4π ε₀
) Q 1/(2R)²
= (1 /4π ε₀
) q/R² 1/4
= Eo 1/4
= 0.25 Eo
D) False the field changes with distance
The correct answer is B