1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ruslelena [56]
2 years ago
6

A car accelerates at a rate of 8.8 m/s² with a force from the tires of 15,840 N.

Physics
1 answer:
dezoksy [38]2 years ago
4 0

Answer:

1,800kg

Explanation:

Force = Mass x Acceleration

F = m x a

15840N = m x 8.8

8.8 x m = 15840

m = 15840/8.8

= 1,800kg

You might be interested in
Calculate the reading on voltmeter v²​
Yuliya22 [10]

The reading of the voltmeter can be determined by finding the potential difference across the 2Ω resistance by using the value of current in the circuit. V=IR, here V is the potential difference across a resistance R through which a current I is flowing.

3 0
2 years ago
Read 2 more answers
A solid cylinder with a mass of 2.72 kg and a radius of 0.083 m starts from rest at a height of 4.20 m and rolls down a 88.7 ◦ s
Bingel [31]

Explanation:

According to the law of conservation of energy ,    

             Potential energy = kinetic energy

   mgh = \frac{1}{2} \times mv^{2} + \frac{1}{2} \times I \times \omega^{2}

                  I = \frac{mr^{2}}{2}

          \omega = \frac{v}{r}

     mgh = [\frac{1}{2} \times mv^{2}] + [\frac{1}{2} \times (\frac{mr^{2}}{2}) \frac{v^{2}}{r^{2}}]

     mgh = [\frac{1}{2} \times mv^{2}] + [\frac{1}{4} \times mv^{2}]

             g \times h = \frac{3}{4} \times v^{2}

             9.8 \times 4.2 = \frac{3}{4} \times v^{2}

                  v = 7.4 m/s

thus, we can conclude that the translational speed of the cylinder when it leaves the incline is 7.4 m/s.

5 0
3 years ago
Two instruments produce a beat frequency of 5 Hz. If one has a frequency of 264 Hz, what could be the frequency of the other ins
Lerok [7]

Answer:

259 Hz or 269 Hz

Explanation:

Beat: This is the phenomenon obtained when two notes of nearly equal frequency are sounded together. The S.I unit of beat is Hertz (Hz).

From the question,

Beat = f₂-f₁................ Equation 1

Note: The frequency of the other instrument is either f₁ or f₂.

If the unknown instrument's frequency is f₁,

Then,

f₁ = f₂-beat............ equation 2

Given: f₂ = 264 Hz, Beat = 5 Hz

Substitute into equation 2

f₁ = 264-5

f₁ = 259 Hz.

But if the unknown frequency is f₂,

Then,

f₂ = f₁+Beat................. Equation 3

f₂ = 264+5

f₂ = 269 Hz.

Hence the beat could be 259 Hz or 269 Hz

8 0
3 years ago
Please Please Please Can Help Me On This Question!!!!! I Give Thanks!!!! Please Do 1-4!!!!
ololo11 [35]
1.add the amount of the diagram which is M+Y then dived the answer you get.
5 0
3 years ago
Read 2 more answers
A 2kg block has 70J of KE. It then travels 1.5 meters up a hill. As it travels up the hill friction does -12J of work on the blo
Dima020 [189]

Answer:

v = 5.34[m/s]

Explanation:

In order to solve this problem, we must use the theorem of work and energy conservation. This theorem tells us that the sum of the mechanical energy in the initial state plus the work on or performed by a body must be equal to the mechanical energy in the final state.

Mechanical energy is defined as the sum of energies, kinetic, potential, and elastic.

E₁ = mechanical energy at initial state [J]

E_{1}=E_{pot}+E_{kin}+E_{elas}\\

In the initial state, we only have kinetic energy, potential energy is not had since the reference point is taken below 1.5[m], and the reference point is taken as potential energy equal to zero.

In the final state, you have kinetic energy and potential since the car has climbed 1.5[m] of the hill. Elastic energy is not available since there are no springs.

E₂ = mechanical energy at final state [J]

E_{2}=E_{kin}+E_{pot}

Now we can use the first statement to get the first equation:

E_{1}+W_{1-2}=E_{2}

where:

W₁₋₂ = work from the state 1 to 2.

E_{k}=\frac{1}{2} *m*v^{2} \\

E_{pot}=m*g*h

where:

h = elevation = 1.5 [m]

g = gravity acceleration = 9.81 [m/s²]

70 - 12 = \frac{1}{2}*2*v^{2}+2*9.81*1.5

58 = v^{2} +29.43\\v^{2} =28.57\\v=\sqrt{28.57}\\v=5.34[m/s]

4 0
3 years ago
Other questions:
  • Does the Ozone layer affect our health
    14·2 answers
  • An asteroid is speeding directly towards a space ship with a velocity of 255 m/s. If the asteroid is detected 8000 meters from t
    6·2 answers
  • I need help on the following questions.
    7·1 answer
  • A (Blank) supplies energy to move electricity through a circuit
    7·1 answer
  • A 10,000 N piano is dropped from the top of a building. When the piano reaches terminal speed…
    6·1 answer
  • Once the crate in sample problem 4C is in motion, a horizontal force of 53 N keeps the crate moving with a constant velocity. Fi
    14·2 answers
  • What is mass? what is mass ?<br>​
    10·2 answers
  • HELP ME PLEASE!!!!!! A couch is pushed with a force of 79 N and moves a distance of 7 m across the floor. How much work was done
    15·1 answer
  • Walk done in units time is called​
    14·1 answer
  • What has a higher eccentricity - a planet or a comet?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!