Answer:
a = 9.8 m/s²
Explanation:
Acceleration due to gravity on Earth is constant, which is 9.8 m/s²
Explanation:
In the given situation two forces are working. These are:
1) Electric force (acting in the downward direction) = qE
2) weight (acting in the downward direction) = mg
Therefore, work done by all the forces = change in kinetic energy
Hence,
It is known that the weight of electron is far less compared to electric force. Therefore, we can neglect the weight and the above equation will be as follows.

v = 
= 592999 m/s
Since, the electron is travelling downwards it means that it looses the potential energy.
Answer:
<em><u>option</u></em><em><u> (</u></em><em><u>C)</u></em><em><u> </u></em><em><u>is </u></em><em><u>right</u></em><em><u> answer</u></em>
Explanation:
I think it's helps you
Explanation:
It is given that,
Speed, v₁ = 7.7 m/s
We need to find the velocity after it has risen 1 meter above the lowest point. Let it is given by v₂. Using the conservation of energy as :




So, the velocity after it has risen 1 meter above the lowest point is 6.26 m/s. Hence, this is the required solution.