H = planks constant
<span>m = mass of the object </span>
<span>u = velocity of the object </span>
<span>h = 6.626 * 10^-34 J/s </span>
<span>the mass of an electron is 9.12*10^-31 kg </span>
<span>10% speed of light = 10% * 3*10^8 = 3*10^7 m/s, i dont have my graphing calc with me right now so i leave the technicalities up to you </span>
Answer:
+1
Explanation:
Na₂O₂
NOTE: the oxidation number of oxygen is always –2 except in peroxides where it is –1.
Thus, we can obtain the oxidation number of sodium (Na) in Na₂O₂ as illustrated below:
Na₂O₂ = 0 (oxidation number of ground state compound is zero)
2Na + 2O = 0
O = –1
2Na + 2(–1) = 0
2Na – 2 = 0
Collect like terms
2Na = 0 + 2
2Na = 2
Divide both side by 2
Na = 2/2
Na = +1
Thus, the oxidation number of sodium (Na) in Na₂O₂ is +1
Answer:
4.214 × 10^23 molecules.
Explanation:
Number of molecules in a substance can be calculated by multiplying the number of moles in that substance by Avagadro's number, which is 6.02 × 10^23.
That is, no. of molecule = n × Avagadro constant
In this case, there are 0.7 moles of fructose. Hence;
number of molecules = 0.7 × 6.02 × 10^23
no. of molecule = 4.214 × 10^23 molecules.
The elements present in Ammonium Nitrate are Hydrogen, Nitrogen, and Oxygen at a ratio of 4:2:3, respectively. Hydrogen weighs in at 1.008 amu, Nitrogen at 14.007, and Oxygen at 15.999. This means that the molar mass would be:
Hydrogen
4 x 1.008 = 4.032 amu
Nitrogen
2 x 14.007 = 28.014 amu
Oxygen
3 x 15.999 = 47.997 amu
Total
4.032 + 28.014 + 47.997 = 80.043 amu
The molar mass of Ammonium Nitrate is 80.043 grams per mole.
The potassium will donate one of its valence electrons