Answer:
Typically, diesel trucks cost more than those with gas engines, especially when you're first buying them, as diesel is usually featured as an add-on for gas-powered cars. Diesel add-ons can cost over $5,000 for midsize trucks and around $10,000 for heavy-duty trucks.
Explanation:
Make me brain pls
Answer:
Vab = 80V
Explanation:
The only current flowing in the circuit is supplied by the 100 V source. Its only load is the 40+60 ohm series circuit attached, so the current in that loop is (100V)/(40+60Ω) = 1A. That means V1 = (1A)(60Ω) = 60V.
Vab will be the sum of voltages around the right-side "loop" between terminals 'a' and 'b'. It is (working clockwise from terminal 'b') ...
Vab = -10V +60V +(0A×10Ω) +30V
Vab = 80V
Answer:
a) ∝ and β
The phase compositions are :
C
= 5wt% Sn - 95 wt% Pb
C
= 98 wt% Sn - 2wt% Pb
b)
The phase is; ∝
The phase compositions is; 82 wt% Sn - 91.8 wt% Pb
Explanation:
a) 15 wt% Sn - 85 wt% Pb at 100⁰C.
The phases are ; ∝ and β
The phase compositions are :
C
= 5wt% Sn - 95 wt% Pb
C
= 98 wt% Sn - 2wt% Pb
b) 1.25 kg of Sn and 14 kg Pb at 200⁰C
The phase is ; ∝
The phase compositions is; 82 wt% Sn - 91.8 wt% Pb
Csn = 1.25 * 100 / 1.25 + 14 = 8.2 wt%
Cpb = 14 * 100 / 1.25 + 14 = 91.8 wt%
Answer:
The given grammar is :
S = T V ;
V = C X
X = , V | ε
T = float | double
C = z | w
1.
Nullable variables are the variables which generate ε ( epsilon ) after one or more steps.
From the given grammar,
Nullable variable is X as it generates ε ( epsilon ) in the production rule : X -> ε.
No other variables generate variable X or ε.
So, only variable X is nullable.
2.
First of nullable variable X is First (X ) = , and ε (epsilon).
L.H.S.
The first of other varibles are :
First (S) = {float, double }
First (T) = {float, double }
First (V) = {z, w}
First (C) = {z, w}
R.H.S.
First (T V ; ) = {float, double }
First ( C X ) = {z, w}
First (, V) = ,
First ( ε ) = ε
First (float) = float
First (double) = double
First (z) = z
First (w) = w
3.
Follow of nullable variable X is Follow (V).
Follow (S) = $
Follow (T) = {z, w}
Follow (V) = ;
Follow (X) = Follow (V) = ;
Follow (C) = , and ;
Explanation:
Answer:
hello some parts of your question is missing attached below is the missing part ( the required fig and table )
answer : The solar collector surface area = 7133 m^2
Explanation:
Given data :
Rate of energy input to the collectors from solar radiation = 0.3 kW/m^2
percentage of solar power absorbed by refrigerant = 60%
Determine the solar collector surface area
The solar collector surface area = 7133 m^2
attached below is a detailed solution of the problem