Answer:
Displacement by cyclist is zero.
Explanation:
In the given question bicyclist is travelling in a rectangular track having P , Q and R edges.
The bicyclist starts from P and travel through Q and R and returned to P again.
We need to find its displacement.
We know displacement of a body is its difference between its initial position to final position.
Here in the given question the bicyclist returns to P again.
Therefore, total displacement by bicyclist is zero.
Hence, this is the required solution.
A) In the case of the Boundary Thickness Layer we use the given formula,

We know as well that,
Re = Número de Reynolds = 
Where,
U = velocity
= kinematic viscosity
For water, kinematic viscosity, 
So, 



B) For flat plate boundary layer. Given the Critical Reynolds Number.= 5*10^5 we know that is equal to Re above.
Thus, 
C. Wall shear stress,

For water, dynamic viscosity,
= 2.344*10^-5 lbf-s/ft^2


The ground is very large an small amount of electric charge wont affect it
Answer
given,
difference between the two consecutive maximum
λ = 0.870 - 0.540
λ = 0.33 m
speed of sound = 340 m/s
b) frequency of the sound
v = f x λ
340 = f x 0.33

f = 1030.3 Hz
a) phase difference
the expression of phase difference is given by




now,



Here, Initial momentum = mu = 5*1 = 5 Kg m/s
Final momentum = mv = 5*2 = 10 Kg m/s
So, Momentum has been increased from 5 Kg m/s to 10 Kg m/s. Hence, Your Final answer is option B
Hope this helps!