Answer:
arrangement 2
Explanation:
arrangement 1's spring would broke idek
The tension on the wire is 52.02 N.
From the question, we have
Density of aluminum = 2700 kg/m3
Area,
A = πd²/4
A = π x (4.6 x 10⁻³)²/4
A = 1.66 x 10⁻⁵ m²
μ = Mass per unit length of the wire
μ = ρA
μ = 2700 kg/m³ x 1.66 x 10⁻⁵ m²
μ = 0.045 kg/m
Tension on the wire = √T/μ
34 = √T/0.045
34² = T/0.045
T = 52.02 N
The tension on the wire is 52.02 N.
Complete question:
The density of aluminum is 2700 kg/m3. If transverse waves propagate at 34 m/s in a 4.6-mm diameter aluminum wire, what is the tension on the wire.
To learn more about tension visit: brainly.com/question/14336853
#SPJ4
Answer:
Resistance to electrical currents
Explanation:
Conductors have low resistance to electrical currents, and are used to "conduct" the flow of electricity.
Insulators have very high resistance and are used to protect us from the flow of electricity.
Answer:
As ice melts into water, kinetic energy is being added to the particles. This causes them to be 'excited' and they break the bonds that hold them together as a solid, resulting in a change of state: solid -> liquid.
Explanation:
As we may know, the change in state of an object is due to the change in the average kinetic energy of the particles.
This average kinetic energy is proportional to the temperature of the particles.
This is because heat is a form of energy; by adding energy to ice - heat, you "excite" the water molecules, breaking the interactions in the lattice structure and forming weaker, looser hydrogen-bonding interactions.
This causes the ice to melt. This is demonstrated in the image below.
More generally, when you remove energy - the object cools down, the particles move a lot slower. So slow, that they individually attract other molecules more than before, and this results in a physical change that also changes the state.