Answer:
1.40 atm is the pressure for the gas
Explanation:
An easy problem to solve with the Ideal Gases Law:
P . V = n . R .T
T° = 370K
V = 17.3L
n = 0.8 mol
Let's replace data → P . 17.3L = 0.8mol . 0.082L.atm/mol.K . 370K
P = (0.8mol . 0.082L.atm/mol.K . 370K) / 17.3L = 1.40 atm
Answer:
41 g
Explanation:
We have a buffer formed by a weak acid (C₆H₅COOH) and its conjugate base (C₆H₅COO⁻ coming from NaC₆H₅COO). We can find the concentration of C₆H₅COO⁻ (and therefore of NaC₆H₅COO) using the Henderson-Hasselbach equation.
pH = pKa + log [C₆H₅COO⁻]/[C₆H₅COOH]
pH - pKa = log [C₆H₅COO⁻] - log [C₆H₅COOH]
log [C₆H₅COO⁻] = pH - pKa + log [C₆H₅COOH]
log [C₆H₅COO⁻] = 3.87 - (-log 6.5 × 10⁻⁵) + log 0.40
[C₆H₅COO⁻] = [NaC₆H₅COO] = 0.19 M
We can find the mass of NaC₆H₅COO using the following expression.
M = mass NaC₆H₅COO / molar mass NaC₆H₅COO × liters of solution
mass NaC₆H₅COO = M × molar mass NaC₆H₅COO × liters of solution
mass NaC₆H₅COO = 0.19 mol/L × 144.1032 g/mol × 1.5 L
mass NaC₆H₅COO = 41 g
The best answer between the two choices would be the first option TRUE because the scientific method is used to do more advance research and investigation on things.
The answer is B) particles move faster.