Answer:
Captive breeding
Explanation:
Endangered species, such as the Black Rhino, Saola, Cross River Gorrillas, the Blue Whale, and a host of others, are species that are critically under the verge of extinction either as a result of the destruction of their habitat or poaching/overhunting, which has really led to steep decline in their population.
Several attempts have been made and ate being made to ensure the preserve and protect these endangered species form going extinct.
However, the best of such measures or practices is arguably referred to as Captive Breeding.
Captive breeding involves the capturing of some of these endangered species and transporting them to enclosed and monitored facilities such as zoos in other to promote the increase preservation and survival of these species and ensuring they don't go extinct.
In most cases, when a considerable increase in population in these facilities is established through breeding, some of them are later on reintroduced to their natural habitat in the wild. This do not only ensure biodiversity, it also ensures the population of the endangered species to grow and avoid such species from going extinct.
<span>Several
important pollutants are produced by fossil fuel combustion: carbon
monoxide, nitrogen oxides, sulfur oxides, and hydrocarbons. In addition,
total suspended particulates contribute to air pollution, and nitrogen
oxides and hydrocarbons can combine in the atmosphere to form
tropospheric ozone, the major constituent of smog.
Carbon monoxide is a gas formed as a by-product during the incomplete
combustion of all fossil fuels. Exposure to carbon monoxide can cause
headaches and place additional stress on people with heart disease. Cars
and trucks are the primary source of carbon monoxide emissions.
Two oxides of nitrogen--nitrogen dioxide and nitric oxide--are formed in
combustion. Nitrogen oxides appear as yellowish-brown clouds over many
city skylines. They can irritate the lungs, cause bronchitis and
pneumonia, and decrease resistance to respiratory infections. They also
lead to the formation of smog. The transportation sector is responsible
for close to half of the US emissions of nitrogen oxides; power plants
produce most of the rest.
Sulfur oxides are produced by the oxidization of the available sulfur in
a fuel. Utilities that use coal to generate electricity produce
two-thirds of the nation's sulfur dioxide emissions. Nitrogen oxides and
sulfur oxides are important constituents of acid rain. These gases
combine with water vapor in clouds to form sulfuric and nitric acids,
which become part of rain and snow. As the acids accumulate, lakes and
rivers become too acidic for plant and animal life. Acid rain also
affects crops and buildings.
Hydrocarbons are a broad class of pollutants made up of hundreds of
specific compounds containing carbon and hydrogen. The simplest
hydrocarbon, methane, does not readily react with nitrogen oxides to
form smog, but most other hydrocarbons do. Hydrocarbons are emitted from
human-made sources such as auto and truck exhaust, evaporation of
gasoline and solvents, and petroleum refining.
The white haze that can be seen over many cities is tropospheric ozone,
or smog. This gas is not emitted directly into the air; rather, it is
formed when ozone precursors mainly nonmethane hydrocarbons and nitrogen
oxides react in the presence of heat and sunlight. Human exposure to
ozone can produce shortness of breath and, over time, permanent lung
damage. Research shows that ozone may be harmful at levels even lower
than the current federal air standard. In addition, it can reduce crop
yields.
Finally, fossil fuel use also produces particulates, including dust,
soot, smoke, and other suspended matter, which are respiratory
irritants. In addition, particulates may contribute to acid rain
formation.
Also, water and land pollution.
</span>
Answer:
Bonds basically differs with each other due to sharing of electrons .
Explanation:
There are majorly three kinds of bonds
1. Ionic bonds which forms due to an element donate an electron to another element completely .
2. covalent bonds which forms with the mutual sharing of electrons b/w two atoms .
3. metallic bonds which forms b/w metals & they share electrons due to electron negativity difference b/w two atoms or elements