1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kolezko [41]
2 years ago
15

⃗ has the magnitude 15 cm and it makes and angle 40° with positive X axis. Calculate the X and Y component of ⃗.

Physics
1 answer:
topjm [15]2 years ago
3 0

The X component of the vector is 11.5 while the Y component is 9.6.

<h3>What are the components of a vector?</h3>

We know that a vector must posses both magnitude and direction. Now the vector could be resolved into the vertical and the horizontal components of the mixture.

In resolving this vector;

X component = 15 cm cos 40 degrees = 11.5

Y component =  15 cm sin 40 degrees = 9.6

Thus the X component of the vector is 11.5 while the Y component is 9.6.

Learn more about vectors:brainly.com/question/13322477

#SPJ1

You might be interested in
suppose you got up this morning and the lightbulb in your room wouldn't come on. Use the of the scientific method to explain how
Anna007 [38]

Answer:TEP 1: State the Problem

A problem is a question to be thought about and either solved or answered. Problems surround all of us. Each day we are faced with more problems than we realize and we use the scientific method to solve them without even thinking about it.

EXAMPLE: The lamp does not come on when you flip the switch.

Your problem may be something that you observe around you or it can be determined by researching a topic and attempting to repeat an experiment of another scientist based on what you are working with.

STEP 2: Make Observations

An observation is the act of recognizing and recording something that is happening. Observing often involves the use of measurements and instruments to take measurements with.

EXAMPLE: (1) There is a light bulb. (2) The switch is in the on position.

(3)Other lights in the house are on. (4) The electrical cord is plugged in.

You make these observations based on the things you see, hear, and in other ways notice going on around you. You may also base your observations on information you found from researching the topic. Maybe you found the manual for the lamp and read about how it is supposed to work. You might have searched for information about Thomas Edison and his invention of the light bulb. These works of others are called background research.

 

STEP 3: Form a Hypothesis

A hypothesis is an educated guess meaning an explanation for something that happens based on facts that can then be tested to try and find logical answers.

EXAMPLE: The light bulb is burned out.

Your hypothesis should answer your question of why the lamp does not come on. You can come to this conclusion based on your own knowledge or from researching how a lamp works. We assume that if the lamp is plugged in and turned on that it should light. We also know that if other lights in the house are on, some electricity is running through the house. Your hypothesis does not have to be proven correct by your experiment, it just needs to be testable.

Having more than one hypothesis is fine. There could be a number of reasons why the lamp is not lit and testing them all might be the only way to find an answer. Before beginning to experiment, use logical reason to determine if any of your hypotheses can be eliminated. Maybe the fuse is blown or the outlet is bad. The switch could be wired wrong or broken. These are all testable hypotheses that could be looked into if the light bulb is not the problem.

 

STEP 4: Experiment

An experiment is a step-by-step procedure that is carried out under controlled conditions to attempt to prove a hypothesis, discover and unknown effect or law, or to illustrate a known law.

EXAMPLE: First remove the light bulb and screw it back in tightly to make sure that it was not loose. If that does not work, take the bulb from a lamp you know is working and place it in the broken lamp. If that lights, try another bulb to be sure.

Your experimental set-up should include a control and a variable. You may include more than one variable, but this will increase the size of your experiment. It is also very important to replicate in your experimetal procedure to avoid error. This means that you should try it at least three times. From your experiment you will need to gather data. Data can be organized in charts and or graphs and numerical data should be measured using the metric system.

The Metric System

How To Organize a Data Table

How To Graph

 

STEP 5: Draw a Conclusion

A conclusion is a reasonable judgment based on the examination of data from an experiment. The result or outcome of an act or process.

EXAMPLE: The lamp lit after the bulb was changed, therefore the light bulb must have been burned out.

You might also know from experience that if the filament is broken in a light bulb, it will make a rattling sound when you shake the bulb. To confirm your results, you could shake the bul

Explanation:

5 0
2 years ago
What is the device used to detect and measure current?
dybincka [34]
The Ammeter is used to detect and measure current or amperage. Also a more common tool now used is a multimeter that detects and measures voltage, current, and resistance.

Any questions please just ask. Thank you.
6 0
3 years ago
Read 2 more answers
8. Il An 8.00 kg package in a mail-sorting room slides 2.00 m down a
Vitek1552 [10]

Answer:

See below

Explanation:

Normal force = m g cos 53 = 8 kg * 9.8 m/s^2 * cos 53 = 47.1823 N

  no work is done by this force

Force friction = coeff friction * force normal = .4 * 47.1823 = 7.55 N

   work of friction = 7.55 * 2 m = 15.1 j

Force Downplane = mg sin 53 = 62.61  N

    work = 62.61 * 2 = 125.22 j

Net Force downplane =   force downplane - force friction = 55.06 N

net Work = force * distance = 55.06 N * 2 M = 110.12 j

3 0
2 years ago
During an experiment, you take a measurement of 12.9 inches.
svlad2 [7]

Answer:

1 inch = 2.54 cm

12.9 inches= 12.9 x 2.54

= 32.766

= 32.8 cm (approximately)

Hope it helps...

7 0
3 years ago
A charged particle is accelerated in a uniform electric field. When its velocity is 2 m/s, its electric potential energy is 100
zavuch27 [327]

Answer:

particle's potential energy = 70J

Explanation:

From conservation of energy; K1 + Ue1 = K2 + Ue2

where K1 and K2 are the kinetic energies at two positions and Ue1 and Uue2 are the electrical potential energies at two positions.

k1 = 10J, Ue1 = 100J

K2 = 40J

substitute into K1 + Ue1 = K2 + Ue2

Ue2 = K1 + Ue1 - K2

= 10 +100 - 40

Ue2 = 70J

7 0
2 years ago
Other questions:
  • The rms current output in a circuit is 4.67 A. What is the maximum current?
    5·2 answers
  • What are some common forces that make it difficult for humans to
    10·1 answer
  • Do you think it is alright for a girl to try to win a race for a bike ride explain your answers
    12·2 answers
  • A car is traveling at a velocity of 13.5 m/sec (30 mph) north on a straight road. The mass of the car is 1,000 kg. Calculate the
    10·1 answer
  • Consider the following four objects: a hoop, a solid sphere, a flat disk, a hollow sphere. Each of the objects has mass M and ra
    7·1 answer
  • As an admirer of Thomas Young, you perform a double-slit experiment in his honor. You set your slits 1.09 mm apart and position
    11·1 answer
  • a stone is dropped from rest at an initial height h above the surface of the earth. Show that the speed with which it strikes th
    7·1 answer
  • The ideal mechanical advantage of a machine reflects the increase or decrease in force there world be without friction, it is al
    15·1 answer
  • Creates an image that appears upside down behind the focal point
    12·1 answer
  • At what temperature did the substance in the test tube into a solid?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!