1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vaselesa [24]
1 year ago
9

A fish cannot be killed by throwing an arrow into the water why?​

Physics
2 answers:
juin [17]1 year ago
8 0

Answer:

A big-sized fish wouldn't be killed even if one arrow is shot at it. it takes 5-10 arrows to kill a big-sized fish. A fish can swim faster in water than an arrow when it is shot at water.

Explanation:

olga55 [171]1 year ago
3 0

Answer:

a fish cannot be killed by throwing an arrow into the water because you have to throw the arrow at the fish not just in the water….

Explanation:

common sense TwT


duhhh

You might be interested in
A 0.500-kg glider, attached to the end of an ideal spring with force constant undergoes shm with an amplitude of 0.040 m. comput
Nikitich [7]
There is a missing data in the text of the problem (found on internet):
"with force constant<span> k=</span>450N/<span>m"

a) the maximum speed of the glider

The total mechanical energy of the mass-spring system is constant, and it is given by the sum of the potential and kinetic energy:
</span>E=U+K=  \frac{1}{2}kx^2 + \frac{1}{2} mv^2
<span>where
k is the spring constant
x is the displacement of the glider with respect to the spring equilibrium position
m is the glider mass
v is the speed of the glider at position x

When the glider crosses the equilibrium position, x=0 and the potential energy is zero, so the mechanical energy is just kinetic energy and the speed of the glider is maximum:
</span>E=K_{max} =  \frac{1}{2}mv_{max}^2
<span>Vice-versa, when the glider is at maximum displacement (x=A, where A is the amplitude of the motion), its speed is zero (v=0), therefore the kinetic energy is zero and the mechanical energy is just potential energy:
</span>E=U_{max}= \frac{1}{2}k A^2
<span>
Since the mechanical energy must be conserved, we can write
</span>\frac{1}{2}mv_{max}^2 =  \frac{1}{2}kA^2
<span>from which we find the maximum speed
</span>v_{max}= \sqrt{ \frac{kA^2}{m} }= \sqrt{ \frac{(450 N/m)(0.040 m)^2}{0.500 kg} }=  1.2 m/s
<span>
b) </span><span> the </span>speed<span> of the </span>glider<span> when it is at x= -0.015</span><span>m

We can still use the conservation of energy to solve this part. 
The total mechanical energy is:
</span>E=K_{max}=  \frac{1}{2}mv_{max}^2= 0.36 J
<span>
At x=-0.015 m, there are both potential and kinetic energy. The potential energy is
</span>U= \frac{1}{2}kx^2 =  \frac{1}{2}(450 N/m)(-0.015 m)^2=0.05 J
<span>And since 
</span>E=U+K
<span>we find the kinetic energy when the glider is at this position:
</span>K=E-U=0.36 J - 0.05 J = 0.31 J
<span>And then we can find the corresponding velocity:
</span>K= \frac{1}{2}mv^2
v=  \sqrt{ \frac{2K}{m} }= \sqrt{ \frac{2 \cdot 0.31 J}{0.500 kg} }=1.11 m/s
<span>
c) </span><span>the magnitude of the maximum acceleration of the glider;
</span>
For a simple harmonic motion, the magnitude of the maximum acceleration is given by
a_{max} = \omega^2 A
where \omega= \sqrt{ \frac{k}{m} } is the angular frequency, and A is the amplitude.
The angular frequency is:
\omega =  \sqrt{ \frac{450 N/m}{0.500 kg} }=30 rad/s
and so the maximum acceleration is
a_{max} = \omega^2 A = (30 rad/s)^2 (0.040 m) =36 m/s^2

d) <span>the </span>acceleration<span> of the </span>glider<span> at x= -0.015</span><span>m

For a simple harmonic motion, the acceleration is given by
</span>a(t)=\omega^2 x(t)
<span>where x(t) is the position of the mass-spring system. If we substitute x(t)=-0.015 m, we find 
</span>a=(30 rad/s)^2 (-0.015 m)=-13.5 m/s^2
<span>
e) </span><span>the total mechanical energy of the glider at any point in its motion. </span><span>

we have already calculated it at point b), and it is given by
</span>E=K_{max}= \frac{1}{2}mv_{max}^2= 0.36 J
8 0
3 years ago
Can we see the back side of the moon from earth?
Olegator [25]

No. The moon always keeps the same side facing us. Its rotation and revolution periods are equal.

5 0
2 years ago
Read 2 more answers
The infant's tendency to turn its head toward things that touch its cheek is known as the
katovenus [111]

Answer:

I think it is <em><u>Rooting</u></em><em> </em><u><em>Reflex</em></u>

4 0
3 years ago
Read 2 more answers
6. A dumb, bored child wants to see what will happen if they jump off the top of their shed with an umbrella. As you can guess,
ale4655 [162]

Answer:

All i kno is that that kid ain't gonna be ok

Explanation:

if u tell me how to do it ill do it

5 0
3 years ago
Which statement is true?
Maurinko [17]
The correct answer is<span> B.The speed of sound in air is directly proportional to the temperature of the air.

When the temperature increases so does the speed of sound. Sound is faster by </span>0.60 m/s for every higher degree in air temperature because the air density is reduced and the sound can travel faster.
8 0
2 years ago
Other questions:
  • 43.278 kg - 28.1 g use significant figures rule
    8·1 answer
  • The management information base (MIB) is a repository of data maintained at a managing entity site, providing the network manage
    6·1 answer
  • 1. what kinds of things do scientists in each area study?<br>2. how do scientists answer questions?​
    12·1 answer
  • A uniform rod of mass M and length L can pivot freely at one end. Initially, the rod is oriented vertically above the pivot, in
    7·1 answer
  • Select the best terms from the drop-down menus that fit the nuclear medicine descriptions.
    5·2 answers
  • Consider the flask apparatus below, which contains 2.00 L of H2 at a pressure of 353 torr and 1.00 L of N2 at an unknown pressur
    15·2 answers
  • A nucleus with a mass number of 64 has a mean radius of about: _________.
    9·1 answer
  • A 80 kg parent and a 20 kg child meet at the center of an ice rink. They place their hands together and push. The parent pushes
    10·1 answer
  • A wire as a length of 1.50m, diameter 0.60mm and resistance of 2ohms. calculate the resistance R of a wire of the same materials
    5·1 answer
  • a 1300-kilogram space vehicle travels at 4.8 meters per second along the level surface of mars. if the magnitude of the gravitat
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!