Answer:
Coefficients are the numbers in front of the formulas.
Answer:
Increasing the concentration of the reagents makes the collision between two molecules of the reagents more likely, thereby increasing the probability that the reaction will occur between these reagents.
As for the relationship between concentration and volume, density also comes into play, a higher volume, lower molarity and also lower concentration.
The pressure when increasing could generate a closer approach between the particles, therefore generating an increase in the reaction speed.
Pressure and volume are related but inversely proportional, therefore if the volume increases the pressure decreases and so on.
the reaction rate increases as the contact surface area increases. This is due to the fact that more solid particles are exposed and can be reached by reactant molecules.
A perfect reaction where the collision is promoted and the reaction speed advances is with the presence of a solvent, with an increase in pressure and a decrease in volume, with an increase in the exposure of the surface, with the presence of a catalyst, with increasing temperature and with increasing entrance
Explanation:
The reaction rate is defined as the amount of substance that is transformed into a certain reaction per unit of volume and time. For example, the oxidation of iron under atmospheric conditions is a slow reaction that can take many years but over time it is oxidized sooner or later by the oxygenation of its surface layer, but the combustion of butane in a fire is a reaction that happens in fractions of seconds, giving rise to an exothermic reaction with products such as CO2 and H2O
<span>Soda ash is sodium carbonate, Na2CO3. One chemical property of this compound is its basicity, which is measured by the pKb. The pKb for sodium carbonate is 3.67. It is the result of the dissociation of Na2CO3 in water: Na2CO3 + H2O = Na HCO3 + Na (+) + OH(-). This pKb means that it is a highly basic compound. pKb = log { 1 / [OH-] }, so pKb is a measure of the concentrations of OH- ions, which is the basiciity of the compound. </span>
Chemical change occur when two substances are combined and produces a new substance or decomposes into two or more substances which are entirely different from the original two substances.
There are three types of chemical changes. These are 1) Inorganic Changes, 2) Organic Changes, and 3) Biochemical Changes
Here are some examples of chemicsal changes.
If you combine Sodium and Water, chemical changes causes decomposition into Sodium Hydroxide and Hydrogen.
Sodium + Water ==> Sodium Hydroxide and Hydrogen
Na + H2O ====> NaOH and H
Another example of chemical change is:
Carbon Dioxide and Water will decompose into Sugar and Oxygen
Carbon Dioxide + Water ==> Sugar and Oxygen
CO2 + H2O ==> CnH2nOn (where n is between 3 and 7) and O