Polar covalent bond- a bond where atoms are unevenly shared due to a larger difference in electronegativity of the bonded elements.
Non-polar covalent bond- These are bonds between elements with a low difference in electronegativity. Electrons are shared equally in these bonds between the elements.
Ionic bonds- have such large difference in electronegativity that they take/give electrons to the element they are bonded to. They do not share electrons at all. Bonds between a non-metal and a metal.
<span>283.89 g/mol is the molar mass of tetraphosphorus decoxide</span>
Answer:
New volume is 25.0 mL
Explanation:
Let's assume the gas sample behaves ideally.
According to combined gas law for an ideal gas-

where,
and
represent initial and final pressure respectively
and
represent initial and final volume respectively
and
represent initial and final temperature (in kelvin) respectively
Here,
,
,
and 
So, 
So, the new volume is 25.0 mL
Answer: You multiply and divide when rounding division significant figures
Explanation: Both multiplying and dividing significant figures have the same rule. That rule is, the FINAL ANSWER of a multiplication and division problem should be rounded to the number of significant figures that is the least amount of any figures used in the multiplication or division. Let us demonstrate below.
The generalized rate expression may be written as:
r = k[A]ᵃ[B]ᵇ
We may determine the order with respect to B by observing the change in rate when the concentration of B is changed. This can be done by comparing the first two runs of the experiment, where the concentration of A is constant but the concentration of B is doubled. Upon doubling the concentration of B, we see that the rate also doubles. Therefore, the order with respect to concentration of B is 1.
The same can be done to determine the concentration with respect to A. The rate increases 4 times between the second and third trial in which the concentration of B is constant, but that of A is doubled. We find that the order with respect to is 2. The rate expression is:
r = k[A]²[B]