You have effectively got two capacitors in parallel. The effective capacitance is just the sum of the two.
Cequiv = ε₀A/d₁ + ε₀A/d₂ Take these over a common denominator (d₁d₂)
Cequiv = ε₀d₂A + ε₀d₁A / (d₁d₂) Cequiv = ε₀A( (d₁ + d₂) / (d₁d₂) )
B) It's tempting to just wave your arms and say that when d₁ or d₂ tends to zero C -> ∞, so the minimum will occur in the middle, where d₁ = d₂
But I suppose we ought to kick that idea around a bit.
(d₁ + d₂) is effectively a constant. It's the distance between the two outer plates. Call it D.
C = ε₀AD / d₁d₂ We can also say: d₂ = D - d₁ C = ε₀AD / d₁(D - d₁) C = ε₀AD / d₁D - d₁²
Differentiate with respect to d₁
dC/dd₁ = -ε₀AD(D - 2d₁) / (d₁D - d₁²)² {d2C/dd₁² is positive so it will give us a minimum} For max or min equate to zero.
-ε₀AD(D - 2d₁) / (d₁D - d₁²)² = 0 -ε₀AD(D - 2d₁) = 0 ε₀, A, and D are all non-zero, so (D - 2d₁) = 0 d₁ = ½D
In other words when the middle plate is halfway between the two outer plates, (quelle surprise) so that
d₁ = d₂ = ½D so
Cmin = ε₀AD / (½D)² Cmin = 4ε₀A / D Cmin = 4ε₀A / (d₁ + d₂)
1. The velocity of the spacecraft at position 2 is greater than the velocity of the craft at position 4.
This is due the gravity field of the Earth is used to accelerate the craft. This is true when in a specific point the direction of the movement of the craft is the same direction of the movement of the planet.
In this case the craft will be “catched” by the Earth’s gravitational field, making the craft to enter a circular orbit.
2. At point 1, the direction of the spacecraft changes because of the gravitational force between earth and the spacecraft.
As explained in the first answer, this is the exact point where the trajectory of the spacecraft enters into a circular orbit because of the attraction due gravity of the Earth and therefore changes its direction.
3. Position 3 represents the orbital path of Earth
Being this the orbital path of the Earth and considering the trajectory of the craft, the condition of accelerating the craft is accomplished. If the orbital path of the Earth were the opposite, the effect on the craft would be braking.
Note all of these is related to the gravitational assistance, this consists in a maneuver in which the energy of the gravitational field of a planet or satellite is used to obtain an acceleration or braking of the probe or craft, changing its trajectory.
To learn more about velocity of the spacecraft : brainly.com/question/11900446
#SPJ4
Answer: A chemical equation describes a chemical reaction. Reactants are starting materials and are written on the left-hand side of the equation. Products are the end-result of the reaction and are written on the right-hand side of the equation.
Explanation:
Answer:
a) that laser 1 has the first interference closer to the central maximum
c) Δy = 0.64 m
Explanation:
The interference phenomenon is described by the expression
d sin θ = m λ
Where d is the separation of the slits, λ the wavelength and m an integer that indicates the order of interference
For the separation of the lines we use trigonometry
tan θ = sin θ / cos θ = y / x
In interference experiments the angle is very small
tan θ = sin θ = y / x
d y / x = m λ
a) and b) We apply the equation to the first laser
λ = d / 20
d y / x = m d / 20
y = m x / 20
y = 1 4.80 / 20
y = 0.24 m
The second laser
λ = d / 15
d y / x = m d / 15
y = m x / 15
y = 0.32 m
We can see that laser 1 has the first interference closer to the central maximum
c) laser 1
They ask us for the second maximum m = 2
y₂ = 2 4.8 / 20
y₂ = 0.48 m
For laser 2 they ask us for the third minimum m = 3
In this case to have a minimum we must add half wavelength
y₃ = (m + ½) x / 15
m = 3
y₃ = (3 + ½) 4.8 / 15
y₃ = 1.12 m
Δy = 1.12 - 0.48
Δy = 0.64 m