1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dybincka [34]
1 year ago
13

What is the top of a wave called?

Physics
1 answer:
ohaa [14]1 year ago
7 0

Answer:

The highest part of the wave is called the crest.

Explanation:) hope this helps

The highest part of the wave is called the crest. The lowest part is called the trough. The wave height is the overall vertical change in height between the crest and the trough and distance between two successive crests (or troughs) is the length of the wave or wavelength.

You might be interested in
An electron moving in a direction perpendicular to a uniform magnetic field at a speed of 1.6 107 m/s undergoes an acceleration
umka2103 [35]

Answer:

B = 0.024T positive z-direction

Explanation:

In this case you consider that the direction of the motion of the electron, and the direction of the magnetic field are perpendicular.

The magnitude of the magnetic force exerted on the electron is given by the following formula:

F=qvB     (1)

q: charge of the electron = 1.6*10^-19 C

v: speed of the electron = 1.6*10^7 m/s

B: magnitude of the magnetic field = ?

By the Newton second law you also have that the magnetic force is equal to:

F=qvB=ma       (2)

m: mass of the electron = 9.1*10^-31 kg

a: acceleration of the electron = 7.0*10^16 m/s^2

You solve for B from the equation (2):

B=\frac{ma}{qv}\\\\B=\frac{(9.1*10^{-31}kg)(7.0*10^{16}m/s^2)}{(1.6*10^{-19}C)(1.6*10^7m/s)}\\\\B=0.024T

The direction of the magnetic field is found by using the right hand rule.

The electron moves upward (+^j). To obtain a magnetic forces points to the positive x-direction (+^i), the direction of the magnetic field has to be to the positive z-direction (^k). In fact, you have:

-^j X ^i = ^k

Where the minus sign of the ^j is because of the negative charge of the electron.

Then, the magnitude of the magnetic field is 0.024T and its direction is in the positive z-direction

8 0
3 years ago
Six new refrigerator prototypes are tested in the laboratory. For each refrigerator, the electrical power P needed for it to ope
Mandarinka [93]

Answer:

performance coefficient from largest to the smallest

P= 500 W, Qc,max/deltaT= 2000 J/s

P= 250 W, Qc,max/deltaT= 1000 J/s

P= 750 W, Qc,max/deltaT= 1500 J/s

) P= 400 W, Qc,max/deltaT= 1200 J/s

P= 500 W, Qc,max/deltaT= 1500 J/s

P= 1000 W, Qc,max/deltaT= 3000 J/s.

the rate at which they raise the temperature of the room.

2.1.P= 1000 W, Qc,max/deltaT= 3000 J/s

P= 500 W, Qc,max/deltaT= 2000 J/s

P= 750 W, Qc,max/deltaT= 1500 J/s

P= 500 W, Qc,max/deltaT= 1500 J/s

P= 400 W, Qc,max/deltaT= 1200 J/s

P= 250 W, Qc,max/deltaT= 1000 J/s

Explanation:

A refrigerator is a device that uses work to remove heat energy from a cold reservoir and deposit it into a hot reservoir. .A good refrigerator (with a large performance coefficient) will remove a large amount of heat energy from the cold reservoir for a small amount of work input

The performance coefficient  of a refrigerator is defined as the ratio of the heat energy removed from the cold reservoir  to the work  input to the refrigerator:

k=QC/W

power is defined as work per unit time

1.k=1500/750=2

2. 1200/400=3

3.2000/500=4

4.1000/250=4

5.1500/500=3

6.3000/1000=3

performance coefficient from largest to the smallest

P= 500 W, Qc,max/deltaT= 2000 J/s

P= 250 W, Qc,max/deltaT= 1000 J/s

P= 750 W, Qc,max/deltaT= 1500 J/s

) P= 400 W, Qc,max/deltaT= 1200 J/s

P= 500 W, Qc,max/deltaT= 1500 J/s

P= 1000 W, Qc,max/deltaT= 3000 J/s

2, Rate at which they raise the temperature of the room.

rate at which temperature rises in the inner chamber of the refrigerator is proportional to the rate of energy used to dispel heat from the refrigerator

1.P= 1000 W, Qc,max/deltaT= 3000 J/s

P= 500 W, Qc,max/deltaT= 2000 J/s

P= 750 W, Qc,max/deltaT= 1500 J/s

P= 500 W, Qc,max/deltaT= 1500 J/s

P= 400 W, Qc,max/deltaT= 1200 J/s

P= 250 W, Qc,max/deltaT= 1000 J/s

5 0
3 years ago
List two diseases of the muscular system.
lesantik [10]

Answer:

muscular dystrophy and  myasthenia gravis

4 0
3 years ago
Read 2 more answers
If you have two uncertainties, and they are from two different sources and contribute to the uncertainty of a measurement, what
Darya [45]

The propagation errors we can find the uncertainty of a given magnitude is the sum of the uncertainties of each magnitude.

                           Δm = ∑  | \frac{dm}{dx_i} | \ \Delta x_i

Physical quantities are precise values ​​of a variable, but all measurements have an uncertainty, in the case of direct measurements the uncertainty is equal to the precision of the given instrument.

When you have derived variables, that is, when measurements are made with different instruments, each with a different uncertainty, the way to find the uncertainty or error is used the propagation errors to use the variation of each parameter, keeping the others constant and taking the worst of the  cases, all the errors add up.

If m is the calculated quantity, x_i the measured values ​​and Δx_i the uncertainty of each value, the total uncertainty is

                      Δm = ∑  | \frac{dm}{dx_i } | \ \Delta x_i    | dm / dx_i | Dx_i

               

for instance:

If the magnitude is  a average of two magnitudes measured each with a different error

                     m = \frac{m_1+m_2}{2}

                     Δm = | \frac{dm}{dx_1} |  Δx₁ + | \frac{dm}{dx_2} | Δx₂

                     \frac{dm}{dx_1} = ½

                     \frac{dm}{dx_2} = ½

                     Δm = \frac{1}{2} Δx₁ + ½ Δx₂

                     Δm = Δx₁ + Δx₂

In conclusion, using the propagation errors we can find the uncertainty of a given quantity is the sum of the uncertainties of each measured quantity.

Learn more about propagation errors here:

brainly.com/question/17175455

6 0
2 years ago
A candle is placed 30 cm in front of a convex mirror with a focal length of 20 cm, as shown in the diagram. What is the distance
lora16 [44]
I think the answer is 60 cm.
5 0
3 years ago
Read 2 more answers
Other questions:
  • Modern wind turbines generate electricity from wind power. The large, massive blades have a large moment of inertia and carry a
    8·1 answer
  • Newton's first law of motion is also called the law of acceleration true or false
    9·1 answer
  • Describe the gases that are emitting from a volcanic eruption. What affect do they have on the atmosphere and planet?
    5·1 answer
  • Winds tend to rotate in a counter clockwise direction in the ___ (northern or southern) Hemisphere as they move into a low press
    14·2 answers
  • I<br>Cghggbbbtffhhtrf bvbbjkko
    9·1 answer
  • Canada geese migrate essentially along a north–south direction for well over a thousand kilo-meters in some cases, traveling at
    9·1 answer
  • What kind of light would be the best to use to look inside a cold dark cloud and see the warm stars forming inside?
    9·1 answer
  • Help ASAP PLEASE.............:3​
    8·1 answer
  • PLEASE HELP!!!!!!!!!!!!!!!!!!!
    15·1 answer
  • ECONOMICS GRADE 10 CASE STUDY TOPIC: South African growth and development: Mining and industry Manufacturing and services.​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!