1. CH4 + 2O2 → CO2 + 2H2O
2. 10.80 degrees celsius
3. 45,187 J
4. 7,506 J
<span>5. 52,693 J </span>
Mass of metal piece is 611 g and volume of graduated cylinder is 25.1 mL. When metal piece is placed in the graduated cylinder water level increases to 56.7 mL. The increase in volume is due to volume of metal piece that gets added to the volume of water.
Thus, volume of metal piece can be calculated by subtracting initial volume from the final one.

Thus, volume of metal piece will be 31.6 mL. The mass of metal piece is given 611 g, density of metal can be calculated as follows:

Therefore, density of metal is 19.33 g/mL.
Answer: 12.78ml
Explanation:
Given that:
Volume of KOH Vb = ?
Concentration of KOH Cb = 0.149 m
Volume of HBr Va = 17.0 ml
Concentration of HBr Ca = 0.112 m
The equation is as follows
HBr(aq) + KOH(aq) --> KBr(aq) + H2O(l)
and the mole ratio of HBr to KOH is 1:1 (Na, Number of moles of HBr is 1; while Nb, number of moles of KOH is 1)
Then, to get the volume of a 0.149 m potassium hydroxide solution Vb, apply the formula (Ca x Va)/(Cb x Vb) = Na/Nb
(0.112 x 17.0)/(0.149 x Vb) = 1/1
(1.904)/(0.149Vb) = 1/1
cross multiply
1.904 x 1 = 0.149Vb x 1
1.904 = 0.149Vb
divide both sides by 0.149
1.904/0.149 = 0.149Vb/0.149
12.78ml = Vb
Thus, 12.78 ml of potassium hydroxide solution is required.
Answer:
It traveled for 4 seconds at a distance of about 4.1 meters. With a velocity of 10%.
Explanation:
The oil slick thick = 1.256 x 10⁻⁴ cm
<h3>Further explanation</h3>
Volume is a derivative quantity derived from the length of the principal
The unit of volume can be expressed in liters or milliliters or cubic meters
The conversion is
1 cc = 1 cm3
1 dm = 1 Liter
1 L = 1.06 quart
<em>so for 1 quart = 0.943 L</em>

Volume of oil dumped = volume of swimming pool
