Answer:
The lightbulb will NOT light.
Explanation:
You put me in a difficult position. I can't help it, but the "sample answer" is by far the best way to explain this, briefly and correctly. There's no other choice but to copy it.
This is a short circuit. The branch without the bulb has almost no resistance, so all the current will flow through that branch instead of flowing through the bulb.
<em>If</em> the lower switch were <u>opened</u>, THEN we would have a series circuit. Current would no longer have any other choice but to flow through the bulb, and the bulb would light.
With that information, you can determine the object's speed.
Just divide the distance covered by the time to cover the distance.
If you also know the direction the object moved, then you can
determine its velocity. If you don't, then you can't.
Answer:
changing the magnetic field more rapidly
Explanation:
According to Faraday's law, whenever there is a change in the magnetic lines of force, it leads the production of induced emf. The magnitude of induced emf is proportional to to the rate of change of flux.
Hence if the magnetic field inside a loop of wire is changed rapidly, the magnitude of induced emf increases in accordance with Faraday's law of electromagnetic induction stated above when the magnetic field is changed more rapidly, hence the answer.
The elements which have similar behavior are Barium, strontium and beryllium.
Explanation: