To solve this, we use the Wien's Displacement Law as shown in the attached picture. First, convert the temperature to Kelvin.
C to F:
C = (F - 32)*5/9
C = (325 - 32)*5/9 = 162.78 °C
C to K:
K = C + 273
K = 162.78 + 273 = 435.78 K
λmax = 2898/435.78 =
<em>6</em><em>.65 μm</em>
Your answer is c steam because steam is a gas...
Answer:

Explanation:
Given that
Speed ,v= 2 x 10⁵ m/s ( - y direction)
B= 0.6 T (- z direction)
The resultant force on the proton given as

F= m a
For uniform motion acceleration should be zero.
F = 0






Electric filed should be apply in the negative x direction.
Answer:
.
Explanation:
If the mass of an object is
and the velocity of that object is
, the linear momentum of that object would be
.
Assume that the initial velocity of the mass is positive (
.) However, the direction of the velocity is reversed after the impact. Thus, the sign of the new velocity of the object would be negative- the opposite of that of the initial velocity. The new velocity would be
.
Thus, the change in the velocity of the mass would be:
.
The change in the linear momentum of the mass would be:
.
Thus, the magnitude of the change of the linear momentum would be
.
Answer:
The linear velocity of the object is 8.71 m/s.
Explanation:
Given;
mass of the object, m = 1 kg
radius of the circle, r = 3.3 meters
centripetal force, F = 23 N
Centripetal force is given by;

where;
v is the linear velocity of the object

Therefore, the linear velocity of the object is 8.71 m/s.