Answer: What do you need help with?
Explanation:
To solve this problem, we use the equation:
<span>d = (v^2 - v0^2) /
2a</span>
where,
d = distance of collapse
v0 = initial velocity = 101 km / h = 28.06 m / s
v = final velocity = 0
a = acceleration = - 300 m / s^2
d = (-28.06 m / s)^2 / (2 * - 300 m / s^2)
<span>d = 1.31 m</span>
Answer:
research topic and research question (hypothesis)
Explanation:
Answer:
induced EMF = 240 V
and by the lenz's law direction of induced EMF is opposite to the applied EMF
Explanation:
given data
inductance = 8 mH
resistance = 5 Ω
current = 4.0 A
time t = 0
current grow = 4.0 A to 10.0 A
to find out
value and the direction of the induced EMF
solution
we get here induced EMF of induction is express as
E = - L
...................1
so E = - L 
put here value we get
E = - 8 ×

E = -40 × 6
E = -240
take magnitude
induced EMF = 240 V
and by the lenz's law we get direction of induced EMF is opposite to the applied EMF