Explanation:
Since the balloon is not accelerating means that the net force on the balloon is zero. This implies that the weight of balloon must be equal to the buoyant force on balloon.
Hence, the buoyant force equals the weight of air displaced by the balloon, also 20,000 N.
Weight of the air displaced = density of air × volume
The density of air at 1 atm pressure and 20º C is 1.2 kg/m³
the volume V = 20,000/(1.2×9.8) = 1700 m³
Answer:
Most familiar are surface waves on water, but both sound and light travel as wavelike disturbances, and the motion of all subatomic particles exhibits wavelike properties
Explanation:
Answer:
Research towards increasing the understanding of progressive illnesses, such as Parkinson’s and Alzheimer’s diseases.
Explanation:
The Yerkes Primate center was established in 1930 by Robert Yerkes, in Orange Park, Florida. But was moved to its present location in Emory University.
The center has its focus on two major area of research, which are Immunology and Vaccine, and research towards increasing the understanding of progressive illnesses, such as Parkinson’s and Alzheimer’s diseases.
it is just a matter of integration and using initial conditions since in general dv/dt = a it implies v = integral a dt
v(t)_x = integral a_{x}(t) dt = alpha t^3/3 + c the integration constant c can be found out since we know v(t)_x at t =0 is v_{0x} so substitute this in the equation to get v(t)_x = alpha t^3 / 3 + v_{0x}
similarly v(t)_y = integral a_{y}(t) dt = integral beta - gamma t dt = beta t - gamma t^2 / 2 + c this constant c use at t = 0 v(t)_y = v_{0y} v(t)_y = beta t - gamma t^2 / 2 + v_{0y}
so the velocity vector as a function of time vec{v}(t) in terms of components as[ alpha t^3 / 3 + v_{0x} , beta t - gamma t^2 / 2 + v_{0y} ]
similarly you should integrate to find position vector since dr/dt = v r = integral of v dt
r(t)_x = alpha t^4 / 12 + + v_{0x}t + c let us assume the initial position vector is at origin so x and y initial position vector is zero and hence c = 0 in both cases
r(t)_y = beta t^2/2 - gamma t^3/6 + v_{0y} t + c here c = 0 since it is at 0 when t = 0 we assume
r(t)_vec = [ r(t)_x , r(t)_y ] = [ alpha t^4 / 12 + + v_{0x}t , beta t^2/2 - gamma t^3/6 + v_{0y} t ]
Answer:
See the explanation below.
Explanation:
If you connect the three bulbs 20 W each will have a total power of 60W.
Now we need to understand to assign the meaning of the word gap, that is, if the circuit is open at that point or if there is no bulb connected at that point.
If the circuit is open at Point 2, there will be no current in the circuit, so the battery will drain faster with the three bulbs 20W.
In the second event, where gap means that there are no bulbs connected at that point, it means that you have two bulbs connected in series of 80W each.
In this case the bulbs will consume 160W thus drain the battery faster than the three 20W bulbs connected in series.