Answer:
48.51ms / 174.6 km/h
Explanation:
y = 1/2 x g x t^2 v = g x t
when y = 120m
120 = 1/2 x 9.8 x t^2
t^2 = 24.49
t = 4.95s
when t = 4.95s
v = 9.8 x 4.95
v = 48.51 m/s = 174.6 km/h
I'd say its realistic. But I don't really know that sry
Incandescent lights get hot very quickly and therefore can easily burn u or catch fire
Answer:
[1, 6, -2]
Explanation:
Given the following :
Initial Position of spaceship : [3 2 4] km
Velocity of spaceship : [-1 2 - 3] km/hr
Location of ship after two hours have passed :
Distance moved by spaceship :
Velocity × time
[-1 2 -3] × 2 = [-2 4 -6]
Location of ship after two hours :
Initial position + distance moved
[3 2 4] + [-2 4 -6] = [3 + (-2)], [2 + 4], [4 + (-6)]
= [3-2, 2+4, 4-6] = [1, 6, -2]
Answer:
zero velocity
Explanation:
if the v-t graph is parallel to the time axis its mean body has covered no path in other words the body is at rest so the velocity of the body should be zero
hope my answer will helps u plz mark me brainlist
Newton's 2nd law of motion:
Force = (mass) x (acceleration)
= (0.314 kg) x (164 m/s²)
= 51.5 newtons
(about 11.6 pounds).
Notice that the ball is only accelerating while it's in contact with the racket. The instant the ball loses contact with the racket, it stops accelerating, and sails off in a straight line at whatever speed it had when it left the strings.
~ I hope this helped, and I would appreciate Brainliest. ♡ ~ ( I request this to all the lengthy answers I give ! )