First you need to know the molecular weight of sugar (C6H12O6) which is 180.156g/mol
You have half a mole so you have 90.078g
If you wanted to make 1L of a 1.2M solution of glucose you would need 180.156*1.2=216.1872g
But you only have 90.078g
So you need to figure out how much this 90.078g will make if the solution must be 1.2M:
90.078g/216.1872g=xL/1L
solve for the X and you get 0.416666666...
so 416.7ml or 0.417L
Answer:
(3) 5.36
Explanation:
Since this is a titration of a weak acid before reaching equivalence point, we will have effectively a buffer solution. Then we can use the Henderson-Hasselbalch equation to answer this question.
The reaction is:
HAc + NaOH ⇒ NaAc + H₂O
V NaOH = 40 mL x 1 L/1000 mL = 0.040 L
mol NaOH reacted with HAc = 0.040 L x 0.05 mol/L = 0.002 mol
mol HAC originally present = 0.050 L x 0.05 mol/L = 0.0025 mol
mol HAc left after reaction = 0.0025 - 0.002 = 0.0005
Now that we have calculated the quantities of the weak acid and its conjugate base in the buffer, we just plug the values into the equation
pH = pKa + log ((Ac⁻)/(HAc))
(Notice we do not have to calculate the molarities of Ac⁻ and HAc because the volumes cancel in the quotient)
pH = -log (1.75 x 10⁻⁵) + log (0.002/0.0005) = 5.36
THe answer is 5.36
It should be for the total solution of 93 plus 20 grams which is 113 grams so 93 divided by 113 grams comes to 82.3% sodium sulfate and this can be checked by multiplying 113 grams by 0.823 which results in 93 grams of sodium sulphate.
Answer:
The answer to your question is: letter A
Explanation:
If an atom lose 3 electrons its charge will be positive, it will be +3
Answer:
1.034 L
Explanation:
P1 V1 = P2 V2
P1 V1 / P2 = V2
2.4 (2.5) / 5.8 = V2 = 1.034 L