W=mgh W=(20)(9.8)(1) w=196J
Answer: 117.6N
Explanation:
By the second Newton's law, we know that:
F = m*a
F = force
m = mass
a = acceleration
We know that in the surface of the Earth, the gravitational acceleration is g = 9.8m/s^2.
Then we just can input that acceleration in the above equation, and also replace m by 12kg, and find that the force due the gravity is:
F = 12kg*9.8m/s^2 = 117.6N
Answer:

Explanation:
<u>Dimensional Analysis</u>
It's given the relation between quantities A, B, and C as follows:

and the dimensions of each variable is:



Substituting the dimensions into the relation (the coefficient is not important in dimension analysis):

Operating:


Equating the exponents:


Adding both equations:

Solving:


Answer:

So base on your question that as if the vapors volume were to incorrectly recorded as 125ml, the effect of the error to calculate the molar mass is the same as the error in measuring the volume of the vapor. I hope you are satisfied with my answer and feel free to ask for more
Answer:
Second Trial satisfy principle of conservation of momentum
Explanation:
Given mass of ball A and ball B 
Let mass of ball
and
Final velocity of ball 
Final velocity of ball 
initial velocity of ball 
Initial velocity of ball 
Momentum after collision 
Momentum before collision 
Conservation of momentum in a closed system states that, moment before collision should be equal to moment after collision.
Now, 
Plugging each trial in this equation we get,
First Trial

momentum before collision
moment after collision
Second Trial

moment before collision
moment after collision
Third Trial

momentum before collision
moment after collision
Fourth Trial

momentum before collision
moment after collision
We can see only Trial- 2 shows the conservation of momentum in a closed system.