Answer:
= 5/9
Explanation:
This is an exercise that we can solve using Archimedes' principle which states that the thrust is equal to the weight of the desalted liquid.
B = ρ_liquid g V_liquid
let's write the translational equilibrium condition
B - W = 0
let's use the definition of density
ρ_body = m / V_body
m = ρ_body V_body
W = ρ_body V_body g
we substitute
ρ_liquid g V_liquid = ρ_body g V_body
In the problem they indicate that the ratio of densities is 5/9, we write the volume of the bar
V = A h_bogy
Thus
we substitute
5/9 = 

Hi Pupil Here's Your answer :::
➡➡➡➡➡➡➡➡➡➡➡➡➡
An object moving with constant speed can be accelerated if direction of motion changes. For example, an object moving with a constant speed in a circular path has an acceleration because its direction of motion changes continuously.
⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅
Hope this Helps . . . . . . . . .
Answer:
1.8m
Explanation:
Let the Elastics of the steel ASTM-36 
The strain of the bar when subjected to 150 MPa is

Therefore, if the bar elongates by 1.35 mm, then the original length L would be:

or 1.8m
Answer:

Explanation:
Given data
Mass m=67.0 kg
Final Speed vf=8.00 m/s
Initial Speed vi=2.00 m/s
Distance d=25.0 m
Force F=30.0 N
From work-energy theorem we know that the work done equals the change in kinetic energy
W=ΔK=Kf-Ki=1/2mvf²-1/2mvi²
And

So

and we know that the force the sprinter exerted Fsprinter the force of the headwind Fwind=30.0N
So
since centripetal acceleration is always towards the center of the circle
so at the given position where speed and acceleration is given the center coordinate will be towards the center of circle
also we know that



so the coordinates of the center will be


so the coordinate is (3.20 m, 4.04 m)