1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexeev081 [22]
10 months ago
9

a 2000 kg elevator with broken cables in a test rig is falling at 4.00 m/s when it contacts a cushioning spring at the bottom of

the shaft. the spring is intended to stop the elevator, compressing 2.00 m as it does so. during the motion a safety clamp applies a constant 17,000 n friction force to the elevator.
Physics
1 answer:
Ratling [72]10 months ago
6 0

A. The speed of the elevator after it has moved downward 1.00 m from the point where it first contacts a spring is 3.65m/s

B. The acceleration when the elevator is 1.00 {\rm m} below point where it first contacts a spring is 4m/s²

In calculating the speed of the elevator and acceleration, first we have to find the force of gravity F on the elevator, which is the force pulling the elevator in downward direction. Using the equation for force of gravity which is:

F = mg

Where:

Mass of the elevator; m= 2000kg

Acceleration due to gravity; g = 9.8m/s

2000kg × 9.8m/s²= 19600N

F = 19600

Force of opposing friction clamp of gravity = 17000N

Net force on the elevator = force of gravity - Force of opposing friction clamp

Net force on the elevator = 19600 - 17000

Net force on the elevator = 2600 N

We will also find the kinetic energy K.E; of the elevator at the point of contact with the spring using:

K.E = 1/2 mv²

Where

Mass of the elevator; m = 2000kg

Velocity of the elevator = 4.00m/s

K.E = (1/2)*2000kg*(4m/s)²

K.E = 16000J

The kinetic energy and energy gained will be absorbed by the spring across the next 2m

Therefore,

Energy; E = K.E + P.E

Where:

Kinetic energy K.E = 16000J

Potential Energy P.E = ?

P.E of spring = net force absorbed × distance at compression

Where:

Net force absorbed = 2600N

Distance at compression = 2.0m

P.E = 2600*2

P.E = 5200J

E = 16000J + 5200J

E = 21200J

Spring constant = k

To find k

Using:

E = (1/2)*k*(x)²

Where:

E = 21200J

k = ?

x = 2m

21200J = (1/2)*k*(2m)²

21200J*2 = (4m)k

K = 42400J/4m

K = 10600N/m

Therefore,

Acceleration at 1m compression = ?

Using:

F = K*X

Where

F is force provided by the spring = 10600N/m,

K = 10600 N/m

X = 1m

F = 10600N/m * 1m

F = 10600N (upward)

A. The speed of the elevator after it has moved downward 1.00 {\rm m} from the point where it first contacts a spring?

Using:

Original Kinetic energy + net force on the elevator = final kinetic energy + spring energy

16000N + 2600N = (1/2)mv² + (1/2)k x²

18600 = (1/2)(2000)(v²) + (1/2)(10600N)(1²)

18600 = 1000(v²) + 5300

18600 - 5300 = 1000(v²)

13300 = 1000(v²)

V² = 13.300

V =3.65m/s

B. The acceleration of the elevator is 1.00m below point where it first contacts a spring

Spring constant = net force on the elevator + resultant force

Where:

Spring constant = 10600N

Net force on the elevator = 2600N

Resultant force = ?

10600N = 2600N + resultant force

Resultant force = 10600N - 2600N

Resultant force = 8000N

Using the equation for Newton's 2nd law where F = ma,

a = F/m

Where:

Resultant force; F =8000N

Mass of the elevator; m =2000kg)

a = 8000 / 2000

a = 4m/s²

Here's the complete question:

In a "worst-case" design scenario, a 2000kg elevator with broken cables is falling at 4.00m/s when it first contacts a cushioning spring at thebottom of the shaft. The spring is supposed to stop the elevator,compressing 2.00m as it does so. During the motion a safety clampapplies a constant 17000N frictional force to the elevator.

1. What is the speed of the elevator after it has moved downward 1.00m from the point where it first contacts aspring?

2. When the elevator is 1.00m below point where it first contacts a spring, what is its acceleration?

Learn more about calculating speed of an elevator from:

brainly.com/question/3850823?referrer=searchResults

#SPJ4

You might be interested in
Maya and Kenzie are discussing oil spills and how they impact the environment. How can humans help reduce the impact of oil spil
madam [21]

The correct answer is A.

6 0
2 years ago
Read 2 more answers
By what potential difference must a proton [m_0 = 1.67E-27 kg) be accelerated to have a wavelength lambda = 4.23E-12 m? By what
Vinil7 [7]

Explanation:

1. Mass of the proton, m_p=1.67\times 10^{-27}\ kg

Wavelength, \lambda_p=4.23\times 10^{-12}\ m

We need to find the potential difference. The relationship between potential difference and wavelength is given by :

\lambda=\dfrac{h}{\sqrt{2m_pq_pV}}

V=\dfrac{h^2}{2q_pm_p\lambda^2}

V=\dfrac{(6.62\times 10^{-34})^2}{2\times 1.6\times 10^{-19}\times 1.67\times 10^{-27}\times (4.23\times 10^{-12})^2}

V = 45.83 volts

2. Mass of the electron, m_p=9.1\times 10^{-31}\ kg

Wavelength, \lambda_p=4.23\times 10^{-12}\ m

We need to find the potential difference. The relationship between potential difference and wavelength is given by :

\lambda=\dfrac{h}{\sqrt{2m_eq_eV}}

V=\dfrac{h^2}{2q_em_e\lambda^2}

V=\dfrac{(6.62\times 10^{-34})^2}{2\times 1.6\times 10^{-19}\times 9.1\times 10^{-31}\times (4.23\times 10^{-12})^2}

V=6.92\times 10^{34}\ V

V = 84109.27 volt

Hence, this is the required solution.

7 0
3 years ago
What will a spring scale read for the weight of a 75.0-kg woman in an elevator that moves upward with constant speed of 5.8 m/s
Sholpan [36]
<span>On the scale the only external forces are the man's weight acting downwards and the normal force which the scale exerts back to support his weight. So F = Ma = mg + Fs The normal force Fs (which is actually the reading on the scale) = Ma + Mg But a = 0 So Fs = Mg which is just his weight. Fs = 75 * 9.8 = 735N</span>
7 0
3 years ago
Dans un tube en U contenant du mercure ,on verse de l'autre côté de l'acide sulfurique de densité 1,84 et de l'autre côté de l'a
Iteru [2.4K]

Explanation:

Unclear question. The clear rendering reads;

"Into a U-tube containing mercury, pour on the other side sulfuric acid of density 1.84 and on the other side alcohol of density 0.8 so that the levels are in the same horizontal plane. The height of the acid above the mercury being 24 cm. What is the height of the bar and what variation of the level of the acid, when the mercury density is 13.6?

6 0
2 years ago
What drives plate tectonics in the earths interior
xxTIMURxx [149]
The convection going on with the magma in the asthenosphere
4 0
2 years ago
Read 2 more answers
Other questions:
  • Jessica and Martin start riding their bicycles towards each other at 2 pm. At 2 pm, they are 25 miles apart. Jessica rides her b
    12·1 answer
  • The dimensions of a room are 16.40 m long, 4.5 m wide and 3.26 m high. What is the volume of the room in cubic meters? Express y
    5·1 answer
  • A ball dropped from rest falls freely until it hits the ground with a speed pf 20 m/s. The time during with the ball is in free
    11·1 answer
  • Manita carries a box of mass 40 kg.what is the weight<br>​
    10·1 answer
  • Please help meeeee will mark as brainliest​
    15·1 answer
  • What happens if two small positively charged particles of equal force are placed close to each other?
    13·2 answers
  • Good Morning Chabko...xD<br><br>Kaiche hoo Chab...<br><br>What is Chloroplast???​
    14·2 answers
  • In which of the following scenarios is the total momentum of the system conserved?
    10·1 answer
  • 7. When will an object's displacement and distance traveled be different?
    13·1 answer
  • A 40,000 kg subway train is brought to a stop from a speed of 0.700 m/s in 0.250 m by a large spring bumper at the end of its tr
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!