Answer:
Explanation:
If friction is neglected, the wheel cannot roll and can only slide frictionlessly and will have the same velocity at the bottom of the ramp as if it had been in free fall as it has converted the same amount of potential energy.
mgh = ½mv²
v = √(2gh) = √(2(9.81)(2.00)) = 6.26418... = 6.26 m/s
However if we do not ignore all friction and the wheel rolls without slipping down the slope, the potential energy becomes linear and rotational kinetic energy
mgh = ½mv² + ½Iω²
mgh = ½mv² + ½(½mR²)(v/R)²
2gh = v² + ½v²
2gh = 3v²/2
v = √(4gh/3) =√(4(9.81)(2.00)/3) = 5.11468... = 5.11 m/s
The x and y components of the velocity vector is 17.32 m/s and 10 m/s respectively.
<h3>
What is the x - component of the velocity?</h3>
The x-component of the ball's velocity is the velocity of the ball in the horizontal direction or x-axis.
The velocity of the ball in x-direction is calculated as follows;
Vx = V cosθ
where;
- Vx is the horizontal velocity of the ball
- V is the speed of the ball
- θ is the angle of inclination of the speed
Vx = (20 m/s) x (cos 30)
Vx = 17.32 m/s
The velocity of the ball in y-direction is calculated as follows;
Vy = V sinθ
where;
- Vy is the vertical velocity of the ball
- V is the speed of the ball
- θ is the angle of inclination of the speed
Vy = 20 m/s x sin(30)
Vy = 10 m/s
Learn more about x and y components of velocity here: brainly.com/question/18090230
#SPJ1
Assuming constant acceleration, the goalie slows the ball from 18 m/s to rest in 0.035 s, so that the acceleration felt by the ball is
