The element of a valid contract which is established by getting the signatures of all parties is <u>mutual agreement</u>
<h3>What is an element of a valid contract?</h3>
An element of a valid contract simply refers to that promise made between two or more parties that which allow the courts to make judgement.
Some elements of valid contract are:
- Offer
- Acceptance
- Consideration
- Intention to create legal relation
- Certainty and capacity.
So therefore, the element of a valid contract which is established by getting the signatures of all parties is mutual agreement
Learn more about elements of a valid contract:
brainly.com/question/15101023
#SPJ1
Below are the choices that can be found elsewhere:
A. (4.9 × 10-14 newtons) · tan(30°)
<span>B. (4.9 × 10-14 newtons) · sin(30°) </span>
<span>C. (4.9 × 10-14 newtons) · cos(30°) </span>
<span>D. (4.9 × 10-14 newtons) · arctan(30°) </span>
<span>E. (4.9 × 10-14 newtons) · arccos(30°)
</span>
<span>Force is proportional to the angle made by the velocity with respect to the magnetic field. It is maximum when velocity is perpendicular to the magnetic field and minimum when the velocity is parallel to the magnetic field. It is proportional to sin of the angle. In this problem it will be proportional to sin(30)</span>
Answer:
-2.26×10^-4 radians
Explanation:
The solution involves a right angle triangle
Length is z while the horizontal is the height x
X^2+ 100^2=z^2
Taking the derivatives
2x(dx/dt)=Z^2(dz/dt)
Specific moments = Z= 200 ,X= 100sqrt3 and dx/dt= 11
dz/dt= 1100sqrt3/200 = 9.53
Sin a= 100/a
Taking derivatives in terms of t
Cos a(da/dt)=100/z^2 dz/dt
a= 30°
Cos (30°)da/dt= (-100/40000×9.5)
a= -2.26×10^-4radians
Answer:
44.7 N
Explanation:
The gravitational force between the objects is given by:

where
G is the gravitational constant
m and M are the masses of the two objects
r is the distance between the centres of the two objects
In this problem, we have:
is the mass of the sphere
is the Earth's mass
is the Earth's radius, while h=310 km is the altitude of the sphere, so the distance of the sphere from Earth's centre is

Substituting into the equation, we find
