Answer:
3Q / 4 pi (R^3 - r^3)
Explanation:
Charge density = charge / volume
volume of a spherical shell = 
Answer:
Explanation:
The greatest speed is attained at middle point or equilibrium point or where displacement from equilibrium point is zero .
When the object remains at one of the extreme point it experiences greatest acceleration but at that point velocity is zero . Due to acceleration , its velocity goes on increasing till it come to equilibrium point . At this point acceleration becomes zero . After that its velocity starts decreasing because of negative acceleration . Hence at middle point velocity is maximum .
The greatest acceleration is attained at maximum displacement or at one of the two extreme end .
Greatest restoring force too will be at position where acceleration is maximum because acceleration is produced by restoring force .
Restoring force is proportional to displacement or extension against restoring force . So it will be maximum when displacement is maximum .
Zero restoring force exists at equilibrium position or middle point or at point where displacement is zero . It is so because acceleration at that point is zero .
If you don't ventilate your boat after fueling, the gas fumes will stay in the bottom of boat and this is very dangerous.
Explosion can happen if you don't ventilate your boat after fueling so to avoid any explosion or any problem, you have to follow the proper procedure for fueling the boat.
So always ventilate your boat after fueling.
All black surfaces is the correct answer
To solve this problem we will apply the momentum conservation theorem, that is, the initial momentum of the bodies must be the same final momentum of the bodies. The value that will be obtained will be a vector value of the final speed of which the magnitude will be found later. Our values are given as,




Using conservation of momentum,


Solving for 

Using the properties of vectors to find the magnitude we have,


Therefore the magnitude of the velocity of the wreckage of the two cars immediately after the collision is 12.4135m/s