Answer:density
Explanation:
it’s how’s how dens the ball is
Answer:
C. Lithium is most easily oxidized of the metals listed on the activity series and therefore it will most easily give electrons to metal cations
Explanation:
"Lithium" is a type of alkali metal that has a "single valence electron." Since it is a reactive element, it easily gives up an electron when it is combined with other elements. Such giving up of electron is meant to create compounds or bonds.
Among the common metals listed, "lithium" is the most easily oxidized. This means that it donates its electrons immediately. Such combination makes it exist as a<em> "cation"</em> or <em>"positively-charged."</em>
So, this explains the answer.
<u>Answer:</u> For the given equation, only iron has the value of
equal to 0 kJ.
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f(product)]-\sum [n\times \Delta H^o_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f%28reactant%29%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(1\times \Delta H^o_f_{(Fe(s))})+(3\times \Delta H^o_f_{(CO_2(g))})]-[(3\times \Delta H^o_f_{(CO(g))})+(2\times \Delta H^o_f_{(Fe_2O_3(s))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28Fe%28s%29%29%7D%29%2B%283%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CO_2%28g%29%29%7D%29%5D-%5B%283%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CO%28g%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28Fe_2O_3%28s%29%29%7D%29%5D)
The enthalpy of formation for the substances present in their elemental state is taken as 0.
Here, iron is present in its elemental state which is solid.
Hence, for the given equation, only iron has the value of
equal to 0 kJ.
Answer:
False
Explanation:
The statement is implying that this is the only way to obtain a salt. Any ionic compound is a salt. For example, NaCl (table salt) is an ionic compound. It is the combination of a nonmetal (Cl) and a metal (Na).