Answer:
Rb+
hope it's right:)
..................................
Answer:
pH = 8.34
Explanation:
The equilbriums of the amphoteric HCO₃⁻ (Ion of NaHCO₃) are:
H₂CO₃ ⇄ <em>HCO₃⁻</em> + H⁺ Ka1 <em>-Here, HCO₃⁻ is acting as a base-</em>
<em>HCO₃⁻</em>⇄ CO₃²⁻ + H⁺ Ka2 <em>-Here, is acting as an acid-</em>
Where Ka1 = 4.3x10⁻⁷ and Ka2 = 4.8x10⁻¹¹. As pKa = -log Ka:
pKa1 = 6.37; pKa2 = 10.32
As the pH of amphoteric salts is:
pH = (pKa1 + pKa2) / 2
<h2>pH = 8.34</h2>
Given the percentage composition of HC as C → 81.82 % and H → 18.18 %
So the ratio of number if atoms of C and H in its molecule can will be:
C : H = 81.82 12 : 18.18 1 C : H = 6.82 : 18.18 = 6.82 6.82 : 18.18 6.82 = 1 : 2.66 ≈ 3 : 8
So the Empirical Formula of hydrocarbon is:
C 3 H 8
As the mass of one litre of hydrocarbon is same as that of C O 2 The molar mass of the HC will be same as that of C O 2 i.e 44 g mol
Now let Molecular formula of the HC be ( C 3 H 8 ) n
Using molar mass of C and H the molar mass of the HC from its molecular formula is:
( 3 × 12 + 8 × 1 ) n = 44 n So 44 n = 44 ⇒ n = 1
Hence the molecular formula of HC is C 3 H 8
Does that help?
In 1 molecule of the compound C₆H₁₂O₂ there are 12 moles of hydrogen atoms
<h3>Further explanation</h3>
Given
C₆H₁₂O₂ compound
Required
moles of Hydrogen
Solution
In a compound, there is a mole ratio of the constituent elements.
The empirical formula is the smallest comparison of atoms of compound forming elements.
A molecular formula is a formula that shows the number of atomic elements that make up a compound.
In the C₆H₁₂O₂ compound, there are 3 forming elements: C, H and O
The number of each element is indicated by its subscript
C: 6 moles
H = 12 moles
O = 2 moles