Answer:
The pressure inside the container would increase with each additional pump.
Explanation:
- From the general gas law of ideal gases:
<em>PV = nRT,</em>
where, P is the pressure of the gas.
V is the volume of the gas.
n is the no. of moles of the gas.
R is the general gas constant.
T is the temperature of the gas.
- As clear from the gas law; the pressure of the gas is directly proportional to the no. of moles of the gas.
<em>P α n.</em>
- As gas particles are pumped into a rigid steel container, the no. of moles of the gas will increase.
So, the pressure of the gas will increase.
<em>Thus, the right choice is: The pressure inside the container would increase with each additional pump.</em>
Phương trình hóa học: 2Mg+O2->2Mgo
Answer:
D. Zn → Zn²⁺ + 2e⁻, 2H⁺ + 2e⁻ → H₂.
Explanation:
- It is a redox reaction that is consisted of two half-reactions:
Oxidation reaction:
Zn losses 2 electrons and is oxidized to Zn²⁺:
<em>Zn → Zn²⁺ + 2e⁻.</em>
<em></em>
Reduction reaction:
H⁺ gains 1 electron and is reduced to H:
<em>2H⁺ + 2e⁻ → H₂.</em>
<em></em>
<em>So, the right choice is: D. Zn → Zn²⁺ + 2e⁻, 2H⁺ + 2e⁻ → H₂.</em>
<em></em>
Answer:
Explanation:
Glucose + ATP → glucose 6-phosphate + ADP The equilibrium constant, Keq, is 7.8 x 102.
In the living E. coli cells,
[ATP] = 7.9 mM;
[ADP] = 1.04 mM,
[glucose] = 2 mM,
[glucose 6-phosphate] = 1 mM.
Determine if the reaction is at equilibrium. If the reaction is not at equilibrium, determine which side the reaction favors in living E. coli cells.
The reaction is given as
Glucose + ATP → glucose 6-phosphate + ADP
Now reaction quotient for given equation above is
![q=\frac{[\text {glucose 6-phosphate}][ADP]}{[Glucose][ATP]}](https://tex.z-dn.net/?f=q%3D%5Cfrac%7B%5B%5Ctext%20%7Bglucose%206-phosphate%7D%5D%5BADP%5D%7D%7B%5BGlucose%5D%5BATP%5D%7D)

so,
⇒ following this criteria the reaction will go towards the right direction ( that is forward reaction is favorable until q = Keq