Answer:
The answer is B. A hydrogen atom forms a convalent bond.........
It 1
cause yea it is im doing it in class and the answers is 1
Answer:Cm=o,4 (Mol/l)
Explanation:
Ca(OH)2(s) + 2HCl(aq) → CaCl2(aq) + H2O(l)
0,01 0,02
CM=n/V
Answer:
The estimated feed rate of logs is 14.3 logs/min.
Explanation:
The product of the process is 2000 tons/day of dry wood pulp, of 85 wt% of cellulose. That represents (2000*0.85)=1700 tons/day of cellulose.
That cellulose has to be feed by the wood chips, which had 47 wt% of cellulose in its composition. That means you need (1700/0.47)=3617 tons/day of wood chips to provide all that cellulose.
Th entering flow is wood chips with 45 wt% of water. This solution has an specific gravity of 0.640.
To know the specific gravity of the wood chips we have to write a volume balance. We also know that Mw=0.45*M and Mc=0.55*M.

The specific gravity of the wood chips is 0.494.
The average volume of a log is

The weight of one log is

To provide 3617 ton/day of wood chips, we need


The feed rate of logs is 14.3 logs/min.
Explanation:
At 365 K temperature sulfur tetrafluoride have a density of 0.260 g/L at 0.0721 atm.
What is an ideal gas equation?
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
First, calculate the moles of the gas using the gas law,
PV=nRT, where n is the moles and R is the gas constant. Then divide
the given mass by the number of moles to get molar mass.
Given data:
P= 0.0721 atm
n=\frac{mass}{molar \;mass}n=
molarmass
mass
R= 0.082057338 \;L \;atm \;K^{-1}mol^{-1}R=0.082057338LatmK
−1
mol
−1
T=?
Putting value in the given equation:
\frac{PV}{RT}=n
RT
PV
=n
density = \frac{2 \;atm\; X molar\; mass}{0.082057338 \;L \;atm \;K^{-1}mol^{-1} X T}density=
0.082057338LatmK
−1
mol
−1
XT
2atmXmolarmass
0.260 g/L = \frac{0.0721 \;atm\; X 108.07 g/mol}{0.082057338 \;L \;atm \;K^{-1}mol^{-1} X T}0.260g/L=
0.082057338LatmK
−1
mol
−1
XT
0.0721atmX108.07g/mol
T = 365.2158727 K= 365 K
Hence , at 365 K temperature sulfur tetrafluoride have a density of 0.260 g/L at 0.0721 atm.