Initially, the spring stretches by 3 cm under a force of 15 N. From these data, we can find the value of the spring constant, given by Hook's law:

where F is the force applied, and

is the stretch of the spring with respect to its equilibrium position. Using the data, we find

Now a force of 30 N is applied to the same spring, with constant k=5.0 N/cm. Using again Hook's law, we can find the new stretch of the spring:
The particles can undergo small oscillations around x₂.
The given parameters;
- <em>initial energy of the particles = E₁</em>
- <em>final energy of the particles, E₂ = 0.33E₁</em>
The movement of the particles depends on the kinetic energy of the particles.
When kinetic energy of the particles is 100%, the particles can oscillate from x₁ to x₅.
However, when the total energy of this particles is reduced to one-third (¹/₃) or 33% of the initial energy of the particle, the oscillation of the particles will be reduced.
- The maximum position the particle can oscillate is x₅
- The half position the particles can oscillate is x₃
Since 33% is less than the half of the energy of the particle, the particle will oscillate between x₁ and x₂.
Thus, we can conclude that the particles can undergo small oscillations around x₂.
Learn more here:brainly.com/question/23910777
if they had a suitable amount to cause an interruption in the waves so huge and vast that it makes waves..... it depends because you can have any amount and get different results any day though
hope this helps plz mark me brainliest
D=44.13, Horizontal velocity is unimportant. The time it takes the cannon ball to fall to the ground is the key to determining the height of the cliff. where that cannon is present.
The speed of any projectile travelling along a Horizontal velocity is known as the horizontal velocity. When a particle or object is launched into the air at an angle other than 90 degrees, it moves along the trajectory path and changes the shape of the curve to a parabolic one.
the speed at which velocity changes over time. Due to its magnitude and direction, acceleration is a vector quantity. The first derivative of velocity with respect to time or the second derivative of position with respect to time are further examples. This is called acceleration.
Distance to the ground is d = 1/2gt^2,
where g is the acceleration rate of gravity (9.80665 m/s^2)
and t = 3 secs.
d = .5×9.80665×9 = 44.13 m.
Learn more about horizontal velocity here
brainly.com/question/18084516
#SPJ4