Answer:
(a) 
(b) 
Explanation:
(a) The surface current density of a conductor is the current flowing per unit length of the conductor.

Considering a wire, the current is uniformly distributed over the circumferenece of the wire.

The radius of the wire = a

The surface current density 
(b) The current density is inversely proportional
......(1)
k is the constant of proportionality

........(2)
substituting (1) into (2)





substitute 

Answer:
I. don't. get. this. question
C. Demand increases
Pace increases
Answer:
the work is done by the gas on the environment -is W= - 3534.94 J (since the initial pressure is lower than the atmospheric pressure , it needs external work to expand)
Explanation:
assuming ideal gas behaviour of the gas , the equation for ideal gas is
P*V=n*R*T
where
P = absolute pressure
V= volume
T= absolute temperature
n= number of moles of gas
R= ideal gas constant = 8.314 J/mol K
P=n*R*T/V
the work that is done by the gas is calculated through
W=∫pdV= ∫ (n*R*T/V) dV
for an isothermal process T=constant and since the piston is closed vessel also n=constant during the process then denoting 1 and 2 for initial and final state respectively:
W=∫pdV= ∫ (n*R*T/V) dV = n*R*T ∫(1/V) dV = n*R*T * ln (V₂/V₁)
since
P₁=n*R*T/V₁
P₂=n*R*T/V₂
dividing both equations
V₂/V₁ = P₁/P₂
W= n*R*T * ln (V₂/V₁) = n*R*T * ln (P₁/P₂ )
replacing values
P₁=n*R*T/V₁ = 2 moles* 8.314 J/mol K* 300K / 0.1 m3= 49884 Pa
since P₂ = 1 atm = 101325 Pa
W= n*R*T * ln (P₁/P₂ ) = 2 mol * 8.314 J/mol K * 300K * (49884 Pa/101325 Pa) = -3534.94 J
Answer:
Shawn's speed relative to Susan's speed = 10 mph
Resultant velocity = 82.32 mph
Explanation:
The given data :-
i) Susan driving in north and speed of Susan is ( v₁ ) = 53 mph.
ii) Shawn driving in east and speed of Shawn is ( v₂ ) = 63 mph.
iii) The speed of both Susan and Shawn is relative to earth.
iv) The angle between Susan in north and Shawn in east is 90°.
We have to find Shawn's speed relative to Susan's speed.
v₂₁ = v₂ - v₁ = 63 - 53 = 10 mph
Resultant velocity,

v = 82.32 mph
Answer:
the energy of the spring at the start is 400 J.
Explanation:
Given;
mass of the box, m = 8.0 kg
final speed of the box, v = 10 m/s
Apply the principle of conservation of energy to determine the energy of the spring at the start;
Final Kinetic energy of the box = initial elastic potential energy of the spring
K.E = Ux
¹/₂mv² = Ux
¹/₂ x 8 x 10² = Ux
400 J = Ux
Therefore, the energy of the spring at the start is 400 J.