Answer:
1.45 x 10⁻² g CO₂
Explanation:
To find the mass of carbon dioxide, you need to (1) convert grams CH₄ to moles CH₄ (via molar mass), then (2) convert moles CH₄ to moles CO₂ (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles CO₂ to grams CO₂ (via molar mass). The final answer should have 3 sig figs to reflect the given value (5.30 x 10⁻³ g).
Molar Mass (CH₄): 12.011 g/mol + 4(1.008 g/mol)
Molar Mass (CH₄): 16.043 g/mol
Combustion of Methane:
1 CH₄ + 2 O₂ ---> 2 H₂O + 1 CO₂
Molar Mass (CO₂): 12.011 g/mol + 2(15.998 g/mol)
Molar Mass (CO₂): 44.007 g/mol
5.30 x 10⁻³ g CH₄ 1 mole 1 mole CO₂ 44.007 g
--------------------------- x ---------------- x --------------------- x ----------------- =
16.043 g 1 mole CH₄ 1 mole
= 0.0145 g CO₂
= 1.45 x 10⁻² g CO₂
Answer:
Explanation:
For a chemical reaction, equilibrium is a state at which the rate of the forward reaction equals that of the reverse reaction. The equilibrium constant Keq is a parameter characteristic of this state which is expressed as a ratio of the concentration of the products to that of the reactants.
For a hypothetical reaction:
xA + yB ⇄ zC
The equilibrium constant is :
The given reaction involves the decomposition of H2O into H2 and O2
The equilibrium constant is expressed as :
Since Keq = 5.31*10^-10
Answer:
-85 °C
Explanation:
O and S are in the same group( Group 16). Since S is below O it's atomic mass is higher than O. So molar mass of H2S is higher than H2O. The strength of Vanderwaal Interactions ( London dispersion forces) increases when the molar mass increases. However, only H2O can form H bonds with each other. This is because electronegativity of O is higher than S and therefore H in H2O has a higher partial positive charge than H of H2S.
H bond dominate among these 2 types of forces so the strength of attractions between molecules is higher in H2O than H2S. Therefore more energy should be supplied for H2O to break inter
molecular forces and convert from solid to liquid state than H2S. So mpt of H2O must be higher than that of H2S.
M=mol/L, 0.323M=mol/0.01325. Rework to solve for mol and bam! (I.e. times the two numbers)
Answer:
hc.cxcx.utgjc bm.kgbmgc ,;n khv /k l.;NNNNNFHJNSCJFIHDJASKNSCBDFIHACJOLN BKOHVJEASM;VNLDOHJF
,