From the balanced equation 2KClO3 → 2KCl + 3O2, the coefficients are the following:
coefficient 2 in front of potassium chlorate KClO3
coefficient 2 in front of potassium chloride KCl
coefficient 3 in front of oxygen molecule O2
We got this balanced equation by identifying the number of atoms of each element that we have in the given equation KClO3 → KCl + O2.
Looking at the subscripts of each atom on the reactant side and on the product side, we have
KClO3 → KCl + O2
K=1 K=1
Cl=1 Cl=1
O=3 O=2
We can see that the oxygens are not balanced. We add a coefficient 2 to the 3 oxygen atoms on the left side and another coefficient 3 to the 2 oxygen
atoms on the right side to balance the oxygens:
2KClO3 → KCl + 3O2
The coefficient 2 in front of potassium chlorate KClO3 multiplied by the subscript 3 of the oxygen atoms on the left side indicates 6 oxygen atoms just as the coefficient 3 multiplied by the subscript 2 on the right side indicates 6 oxygen atoms.
The number of potassium K atoms and chloride Cl atoms have changed as well:
2KClO3 → KCl + 3O2
K=2 K=1
Cl=2 Cl=1
O=6 O=6
We now have two potassium K atoms and two chloride Cl atoms on the reactant side, so we add a coefficient 2 to the potassium chloride KCl on the product side:
2KClO3 → 2KCl + 3O2, which is our final balanced equation.
K=2 K=2
Cl=2 Cl=2
O=6 O=6
The potassium, chlorine, and oxygen atoms are now balanced.
Hey there,
I hope this answer solves your doubt.
<u>S</u><u>t</u><u>e</u><u>p</u><u>-</u><u>b</u><u>y</u><u>-</u><u>s</u><u>t</u><u>e</u><u>p</u><u> </u><u>Expla</u><u>n</u><u>a</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u>
The question is asking if the bonds between Carbon and Chlorine in CCl4 will be single, double or triple bonds.
<em>(</em><em>The structure of CCl4 </em><em>i</em><em>s attached as picture. Check it</em><em>)</em>
As per image, the structure consists of <u>Singl</u><u>e</u><u> </u><u>b</u><u>o</u><u>n</u><u>d</u><u>s</u><u>.</u> It is <u>4 single bonds</u>.
Well, figures for efficiency vary a lot, but according to Bicycling Science it’s lubrication that matters most – lubing a dry chain can add 5% to the efficiency.
More interestingly (and I hadn’t read this bit in the book before) it varys a lot depending on gear ratio – bottom gear (22-28) is 99% efficient, top gear (42-11) is 88%. That’s a big difference
Answer: water
water can not be organic...but is is took by humans and plants because theur life dpends on it
Explanation:
Answer: 15
The square root of 225 is 15.
Explanation:
https://api-project-1022638073839.appspot.com/questions/how-do-you-find-the-square-root-of-1849#642333