May I ask, which equation are we referring to again?
If you dropped a ball from any height, and measured its distance from the ground at any regular interval while it's falling, the graph of that distance versus time would be a graph that curves downward.
-- The ball is falling down. As time goes on, it gets closer and closer to the ground. Its remaining distance from the ground keeps decreasing, so the line on the graph slopes down.
-- The speed of the ball keeps increasing (it accelerates) because of the gravitational force on it. As time goes on, it covers more of the remaining distance during each interval than it did in the previous interval. The downward slope of the graph keeps increasing.
It's called texture, meaning how something feels.
Answer:
Explanation:
Work: This can be defined as the product of force and distance. The unit of work is Joules (J). it can be expressed mathematically as
W = F×d
or
W =
.................................. Equation 1
Where b = upper limit, a = lower limit, Fx = expression of force.
<em>Given: a = 0 , b = 1.3 m, Fx = 4 + 15.7x - 1.5x²</em>
Substituting these values into equation 1
<em>W =
</em>
W = ᵇ[4x + 15.7x²/2-1.5x³/3 +C]ₐ
Work = upper limit - lower limit
Work = ᵃ[4x + 15.7x²/2 - 1.5x³/3 +C] - [4x + 15.7x²/2 + 1.5x³/3 +C]ᵇ............... Equation 2
Substituting the values of a and b into equation 2
Work = [4(1.3) + 15.7(1.3)²/2-1.5(1.3)³/3 + C] - [0 +C]
Work = [5.2 + 26.53 -3.29 + C] - C
Work = 28.44 J
Work done by the force = 28.44 J.
Answer:
The magnitude of the uniform magnetic field exerting this torque on the loop is 1.67 T
Explanation:
Given;
radius of the wire, r = 0.45 m
current on the loop, I = 2.4 A
angle of inclination, θ = 36⁰
torque on the coil, τ = 1.5 N.m
The torque on the coil is given by;
τ = NIBAsinθ
where;
B is the magnetic field
Area of the loop is given by;
A = πr² = π(0.45)² = 0.636 m
τ = NIBAsinθ
1.5 = (1 x 2.4 x 0.636 x sin36)B
1.5 = 0.8972B
B = 1.5 / 0.8972
B = 1.67 T
Therefore, the magnitude of the uniform magnetic field exerting this torque on the loop is 1.67 T