Atoms of sulfur = 9.60⋅g32.06⋅g⋅mol−1×6.022×1023⋅mol−1 . Because the units all cancel out, the answer is clearly a number, ≅2×1023 as required.
<span>Hydroxy group..
... :):) ....</span>
Answer:
A beaker
Step-by-step explanation:
Specifically, I would use a 250 mL graduated beaker.
A beaker is appropriate to measure 100 mL of stock solution, because it's easy to pour into itscwide mouth from a large stock bottle.
You don't need precisely 100 mL solution.
If the beaker is graduated, you can easily measure 100 mL of the stock solution.
Even if it isn't graduated, 100 mL is just under half the volume of the beaker, and that should be good enough for your purposes (you will be using more precise measuring tools during the experiment).
Answer:
The answer to your question is 7.4 moles of Aluminum
Explanation:
Data
moles of Al = ?
moles of Al₂O₃ = 3.7
Balanced chemical reaction
4 Al + 3 O₂ ⇒ 2 Al₂O₃
To solve this problem use proportions and cross multiplication. Use the coefficients of the balanced chemical equation.
4 moles of Aluminum ----------------- 2 moles of Al₂O₃
x ----------------- 3.7 moles of Al₂O₃
x = (3.7 x 4) / 2
x = 14.8 / 2
x = 7.4 moles of Aluminum
Answer:
55.18 L
Explanation:
First we convert 113.4 g of NO₂ into moles, using its molar mass:
- 113.4 g ÷ 46 g/mol = 2.465 mol
Then we<u> use the PV=nRT formula</u>, where:
- P = 1atm & T = 273K (This means STP)
- R = 0.082 atm·L·mol⁻¹·K⁻¹
Input the data:
- 1 atm * V = 2.465 mol * 0.082atm·L·mol⁻¹·K⁻¹ * 273 K
And <u>solve for V</u>: