F=ma therefore 25kg*1.0m/s^2=25N force on the mass
<span>The initial momentum of the boy is equal to the boy/boat because the final velocity of the boat is less than the initial velocity of the boy.</span>
We have the equation of motion
, where s is the displacement, a is the acceleration, u is the initial velocity and t is the time taken.
Here displacement = 135 m, Initial velocity = 0 m/s, acceleration = 9.81
Substituting

A box falls out of a stationary helicopter hovering 135 m above the ground will take 5.25 seconds to reach the ground.
Answer:
In a tuning fork, two basic qualities of sound are considered, they are
1) The pitch of the waveform: This pitch depends on the frequency of the wave generated by hitting the tuning fork.
2) The loudness of the waveform: This loudness depends on the intensity of the wave generated by hitting the tuning fork.
Hitting the tuning fork harder will make it vibrate faster, increasing the number of vibrations per second. The number of vibration per second is proportional to the frequency, so hitting the tuning fork harder increase the frequency. From the explanation on the frequency above, we can say that by increasing the frequency the pitch of the tuning fork also increases.
Also, hitting the tuning fork harder also increases the intensity of the wave generated, since the fork now vibrates faster. This increases the loudness of the tuning fork.