The forces that push upward on an indoor skydiver are lift force and air resistance.
The forces that act on a skydiver moving downwards includes, gravity due to his weight, air resistance and lift force.
The downward forces on the indoor skydiver include the following;
- <em>gravity due to its weight</em>
- <em>downward force due its acceleration</em>
<em />
The upward force on the indoor skydiver include the following;
- <em>lift force</em>
- <em>air resistance</em>
Thus, we can conclude that the forces that push upward on an indoor skydiver are lift force and air resistance.
Learn more here:brainly.com/question/8947470
Answer:
To find the diameter of the wire, when the following are given:
Resistivity of the material (Rho), Current flowing in the conductor, I, Potential difference across the conductor ends, V, and length of the wire/conductor, L.
Using the ohm's law,
Resistance R = (rho*L)/A
R = V/I.
Crossectional area of the wire A = π*square of radius
Radius = sqrt(A/π)
Diameter = Radius/2 = [sqrt(A/π)]
Making A the subject of the formular
A = (rho* L* I)V.
From the result of A, Diameter can be determined using
Diameter = [sqrt(A/π)]/2. π is a constant with the value 22/7
Explanation:
Error and uncertainty can be measured varying the value of the parameters used and calculating different values of the diameters. Compare the values using standard deviation
The Bermoulli's equation allows us to find the pressure in the narrow part of the pipe through which water circulates is:
P = 500 Pa
Bernoulli's equation is the work-energy relationship for fluids that are liquids and gases.
Where the subscripts 1 and 2 represent points of interest, P is the pressure, ρ the density of the fluid, v the velocity and y the height.
They indicate that the pipe is horizontal, that the pressure in the wide part P₁ = 200 kPa and the velocity is v₁ = 5 m / s and in the narrow part v₂=8.00 m/s, see attached.
Since the pipe is horizontal y₁ = y₂
P₁ + ½ ρ v₁² = P₂ + ½ ρ v₂²
P₂ = P₁ + ½ ρ (v₁² - v₂²)
Let's calculate
P₂ = 200 10² + ½ ρ (5² - 8²)
P₂ = 2 10⁴ - 19.5 ρ
For a specific calculation the value of the density of the fluid is needed, suppose that the fluid is water ρ = 1000 kg / m³
P₂ = 2 10² - 19.5 1000
P₂ = 500 Pa
In conclusion using the Bermoulli equation we can find the pressure in the narrow part of the pipe through which water circulates is:
P = 500 Pa
Learn more here: brainly.com/question/9506577
The rule to get the average speed is as follows:
average speed = average distance / average time
We are given that:
distance = 250 m
time = 110 sec
Substitute with the givens in the above equation to get the average speed as follows:
average speed = 250/110 = 25/11 meters/sec
I believe the answer is C: For objects at extremely fast speeds.
Hope this helps!