Answer:
The acceleration of the object is 20 meters per second square = 20 m/s^2
Explanation:
Recall that acceleration is defined as the change in velocity divided the time it takes for the change. Therefore , if the object accelerates from rest (zero velocity) to 70 m/s , the change in velocity is (70 m/s - 0 m/s = 70 m/s)
which divided by the 3.5 seconds it took for the change, gives:
acceleration = (70 m/s / 3.5 s ) = 20 m/s^2
Explanation:
Given that,
Initial speed of a car, u = 60 km/h = 16.67 m/s
Acceleration, a = 2m/s²
Final speed, v = 120 km/h = 33.33 m/s
We need to find the distance traveled and the time taken to make the distance.
acceleration = rate of change of velocity

let the distance be d.

Hence, the distance traveled and the time taken to make the distance is 208.25 m and 8.33 seconds respectively.
Atomic number is equal to the number of protons and electrons
Atomic mass - protons = neutrons
protons + neutrons = atomic mass
I hope this helps
Complete question:
A 200 g load attached to a horizontal spring moves in simple harmonic motion with a period of 0.410 s. The total mechanical energy of the spring–load system is 2.00 J. Find
(a) the force constant of the spring and (b) the amplitude of the motion.
Answer:
(a) the force constant of the spring = 47 N/m
(b) the amplitude of the motion = 0.292 m
Explanation:
Given;
mass of the spring, m = 200g = 0.2 kg
period of oscillation, T = 0.410 s
total mechanical energy of the spring, E = 2 J
The angular speed is calculated as follows;

(a) the force constant of the spring

(b) the amplitude of the motion
E = ¹/₂kA²
2E = kA²
A² = 2E/k
