1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gekata [30.6K]
3 years ago
12

A student of mass 40kg takes 10s to run up a flight of 50steps. If each step is 15cm high, calculate the Potential Energy of the

student at the maximum height.​
Physics
1 answer:
astra-53 [7]3 years ago
3 0

Answer:

2943 J

Explanation:

Potential energy = mass x acceleration due to gravity x height in meters

(P.E. = mgh)

Substitute the given numbers: (I take acceleration due to gravity as 9.81 m s^-2)

PE = 40 x 9.81 x (0.15x50)

PE = 2943 J

You might be interested in
What is formed from at least two types of chemically combined atoms?
SashulF [63]
A compound. For example, hydrogen and oxygen atoms form water.
7 0
3 years ago
If the angle of refraction is 20 degrees what is the angle of incidence​
Romashka-Z-Leto [24]

Answer:

13.1

Explanation:

that's what I'm gonna go with, but u can research more

5 0
2 years ago
HELP!!!!! Please hurry up
Degger [83]

it's def. TRUE. i got the same question and i got it right

6 0
3 years ago
Read 2 more answers
(b) The distance of mass from mass A if there is no gravitational force acted on C
shepuryov [24]

Answer:

(a) The force, acting on object 'C' is approximately 2.66972 × 10⁻¹⁰ Newtons

(b) The distance of 'C' from 'A', in the direction particle 'B' if there is no  meters gravitational force acting on 'C' is appromimately 0.829 meters or 1.877 meters

Explanation:

The given parameters are;

The mass of particle, A, m₁ = 2 kg

The mass of particle, B, m₂ = 0.3 kg

The mass of particle, C, m₃ = 0.05 kg

The distance between particle 'A' and particle 'B', r₁ = 0.15 m

The distance between particle 'B' and particle 'C', r₂ = 0.05 m

(a) The gravitational force, 'F', is given as follows;

F =G \times \dfrac{m_{1} \times m_{2}}{r^{2}}

Where;

F = The force between the two masses

G = The gravitation constant = 6.67430 × 10⁻¹¹ N·m²/kg²

m₁ = The mass of object 1

m₂ = The mass of object 2

If 'C' is placed at 0.05 m from 'B', we have;

F₂₃ =  6.67430 × 10⁻¹¹ × 0.05 × 0.3/(0.05²) ≈ 4.00458 × 10⁻¹⁰

The gravitational force between force between particle 'B' and particle 'C', F₂₃ = 4.00458 × 10⁻¹⁰ N (towards the right)

F₁₃ =  6.67430 × 10⁻¹¹ × 0.05 × 2/(0.1²) ≈ × 10⁻¹⁰

The gravitational force between force between particle 'A' and particle 'B', F₁₃ = 6.6743 × 10⁻¹⁰ N (towards the left)

The force, 'F', acting on object 'C' = F₁₃ - F₂₃

F = (6.6743 - 4.00458) × 10⁻¹⁰ = 2.66972 × 10⁻¹⁰ N

The force, acting on object 'C' ≈ 2.66972 × 10⁻¹⁰ N

(b), When there is no gravitational force acting on 'C', let the distance of 'C' from 'A' = x

We have;

F₂₃ = F₁₂

F_{23} =G \times \dfrac{m_{1} \times m_{2}}{r_1^{2}} = F_{13} =G \times \dfrac{m_{1} \times m_{3}}{r_2^{2}}

By plugging in the values and removing like terms, we get;

\dfrac{0.3 \times 0.05}{(1.15 - x)^{2}}  = \dfrac{2 \times 0.05}{x^2}

(1.15 - x)² × 2 × 0.05 = 0.3 × 0.05 × x²

0.1·x² - 0.23·x + 1.3225 = 0.015·x²

0.1·x² - 0.23·x + 1.3225 - 0.015·x² = 0

0.085·x² - 0.23·x + 0.13225= 0

x = (0.23± √((-0.23)² - 4 × 0.085 × ( 0.13225)))/(2 × 0.085))

x ≈ 0.829, or x ≈ 1.877

Therefore, the distance of 'C' from 'A', if there is no gravitational force acting on 'C', x ≈ 0.829 m, or x = 1.877 m, in the direction of 'B'

7 0
2 years ago
The angular momentum of a flywheel having a rotational inertia of 0.140 kg ·m2 about its central axis decreases from 3.00 to 0.8
Rasek [7]

Answer

given,

I = 0.140 kg ·m²

decrease from 3.00 to 0.800 kg ·m²/s in 1.50 s.

a) \tau = \dfrac{\Delta L}{\Delta t}

   \tau = \dfrac{0.8-3}{1.5}

        τ = -1.467 N m

b) angle at which fly wheel will turn

   \theta= \omega t +\dfrac{1}{2}\alpha t^2

   \theta= \dfrac{L}{I} t +\dfrac{1}{2}\dfrac{\tau}{I}t^2

   \theta= \dfrac{3}{0.14}\times 1.5+\dfrac{1}{2}\dfrac{-1.467}{0.14}\times 1.5^2

        θ = 20.35 rad

c) work done on the wheel

     W = τ x θ

     W = -1.467 x 20.35 rad

    W = -29.86 J

d) average power of wheel

    P_{av} =-\dfrac{W}{t}

    P_{av} =-\dfrac{(-29.86)}{1.5}

     P_{av} =19.91\ W          

7 0
2 years ago
Read 2 more answers
Other questions:
  • A stack of books rests on a level frictionless surface. A force F acts on the stack, and it accelerates at 3.0 m/s2. A 1.0 kg bo
    14·1 answer
  • Difference between potential energy and kinetic energy (ASAP)
    13·1 answer
  • What is the law that states that matter can not be created nor destroyed?
    13·1 answer
  • (a) Determine the required delta-v, Ave, to the nearest m/s, to reach a circular 500 km altitude equatorial prograde (eastward)
    5·1 answer
  • What type of rock this is
    8·1 answer
  • 6) Calculate the density of sulfuric acid if 35.4 mL of the acid weighs 65.14 g.
    5·2 answers
  • A homodimeric protein was found to migrate through SDS polyacrilamide gel electrophoresis (SDS-PAGE) with a mobility that matche
    12·1 answer
  • A wire 0.50 m long carrying a current of 16.0 A is at right angles to a 0.20 T magnetic field. How strong a force acts on the wi
    11·1 answer
  • Connective Tissue in a tendon is
    9·1 answer
  • I need help with #24 ASAP .. I have to get it done today
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!