Answer:
0.758 V.
Explanation:
Hello!
In this case, case when we include the effect of concentration on an electrochemical cell, we need to consider the Nerst equation at 25 °C:

Whereas n stands for the number of moles of transferred electrons and Q the reaction quotient relating the concentration of the oxidized species over the concentration of the reduced species. In such a way, we can write the undergoing half-reactions in the cell, considering the iron's one is reversed because it has the most positive standard potential so it tends to reduction:

It means that the concentration of the oxidized species is 0.002 M (that of nickel), that of the reduced species is 0.40 M and there are two moles of transferred electrons; therefore, the generated potential turns out:

Beat regards!
Mercury naturally exists in Liquid state.
On Condensing it can exist in Solid state as well.
Hope it helps...
Regards;
Leukonov/Olegion.
The changes that are common between sauce burning on a stove, and jewelry tarnishing, which is a chemical change.
How to define chemical and physical changes?
Chemical Change-
Any alteration that produces new chemical substances with distinct properties is considered a chemical change. Chemical reactions involve the rearrangement and recombination of elements and compounds to create new substances. Examples of chemical changes are listed below:
- Burning
- Digestion
- chemicals changing colors
- Tarnishing
- compost rotting
Physical Change-
A substance is not destroyed or transformed into something new by physical changes. A substance can undergo physical changes that alter its shape, size, or phase. The constituents of an element or compound do not change during a physical change. Examples of physical changes are listed below:
- Boiling water
- Chopping, Cutting, Carving
- Evaporation
- Freezing, Melting, Condensation
To know more about chemical and physical changes, visit the given link:
brainly.com/question/20628019
#SPJ4
<span>E=hν</span> where E is the energy of a single photon, and ν is the frequency of a single photon. We recall that a photon traveling at the speed of light c and a frequency ν will have a wavelength λ given by <span>λ=<span>cν</span></span>λ will have an energy given by <span>E=<span><span>hc</span>λ</span></span><span>λ=657</span> nm. This will be <span>E=<span><span>(6.626×<span>10<span>−34</span></span>)(2.998×<span>108</span>)</span><span>(657×<span>10<span>−9</span></span>)</span></span>=3.0235×<span>10<span>−19</span></span>J</span>
So we now know the energy of one photon of wavelength 657 nm. To find out how many photons are in a laser pulse of 0.363 Joules, we simply divide the pulse energy by the photon energy or <span>N=<span><span>E<span>pulse </span></span><span>E<span>photon</span></span></span>=<span>0.363<span>3.0235×<span>10<span>−19</span></span></span></span>=1.2×<span>1018</span></span>So there would be <span>1.2×<span>1018</span></span><span> photons of wavelength 657 nm in a pulse of laser light of energy 0.363 Joules.</span>