Two forces F<span>1 and </span>F<span>2 act on the screw eye. The resultant force </span>FR<span> has a magnitude of 125 lb and the coordinate direction angles shown in (Figure 1) . Determine the magnitude of </span>F<span>2. Determine the coordinate direction angle </span>α<span>2 of </span>F<span>2. Determine the coordinate direction angle </span>β<span>2 of </span>F<span>2. Determine the coordinate direction angle </span>γ<span>2 of </span>F<span>2.</span>
For rotational equilibrium of the door we can say that torque due to weight of the door must be counter balanced by the torque of external force

here weight will act at mid point of door so its distance is half of the total distance where force is applied
here we know that

now we will have


so our applied force is 72.5 N
Answer:
μ = 0.375
Explanation:
F = Applied force on the trash can = 75 N
W = weight of the trash can = 200 N
f = frictional force acting on trash can
Since the trash can moves at constant speed, force equation for the motion of can is given as
F - f = 0
75 - f = 0
f = 75 N
μ = Coefficient of friction
frictional force is given as
f = μ W
75 = μ (200)
μ = 0.375
Answer:
Acceleration = 9 × 10^5 m/s^2 ( deceleration )
Explanation:
From the first equation of motion:
V = u + at
15000 = 30000 + 60a
a = ( 15000-30000)/60
a = 9 × 10^5 m/s^2
Answer:

Explanation:
We have,
The surface temperature of the star is 60,000 K
It is required to find the wavelength of a star that radiated greatest amount of energy. Wein's displacement law gives the relation between wavelength and temperature such that :

Here,
= wavelength

So, the wavelength of the star is
.