Grade 1: Stretching or slight tearing of the ligament with mild tenderness, swelling and stiffness. The ankle feels stable and it is usually possible to walk with minimal pain.
Grade 2: A more severe sprain, but incomplete tear with moderate pain, swelling and bruising. Although it feels somewhat stable, the damaged areas are tender to the touch and walking is painful.
Grade 3: This is a complete tear of the affected ligament(s) with severe swelling and bruising. The ankle is unstable and walking is likely not possible because the ankle gives out and there is intense pain.
source - https://www.rushcopley.com/health/physician-articles/varying-degrees-of-ankle-sprains/
Answer: 361° C
Explanation:
Given
Initial pressure of the gas, P1 = 294 kPa
Final pressure of the gas, P2 = 500 kPa
Initial temperature of the gas, T1 = 100° C = 100 + 273 K = 373 K
Final temperature of the gas, T2 = ?
Let us assume that the gas is an ideal gas, then we use the equation below to solve
T2/T1 = P2/P1
T2 = T1 * (P2/P1)
T2 = (100 + 273) * (500 / 294)
T2 = 373 * (500 / 294)
T2 = 373 * 1.7
T2 = 634 K
T2 = 634 K - 273 K = 361° C
Answer:
Option (e) = The charge can be located anywhere since flux does not depend on the position of the charge as long as it is inside the sphere.
Explanation:
So, we are given the following set of infomation in the question given above;
=> "spherical Gaussian surface of radius R centered at the origin."
=> " A charge Q is placed inside the sphere."
So, the question is that if we are to maximize the magnitude of the flux of the electric field through the Gaussian surface, the charge should be located where?
The CORRECT option (e) that is " The charge can be located anywhere since flux does not depend on the position of the charge as long as it is inside the sphere." Is correct because of the reason given below;
REASON: because the charge is "covered" and the position is unknown, the flux will continue to be constant.
Also, the Equation that defines Gauss' law does not specify the position that the charge needs to be located, therefore it can be anywhere.
Answer:
C) Pressure will compress a gas, reducing its volume and giving it a greater density and concentration of particles.
Explanation:
At constant temperature, pressure and volume are inversely related.
P V = constant

As the pressure increases, the gas compresses, the particles come closer reducing the volume of gas.
As we know, with decrease in volume, density increases.


Thus, the pressure of a gas is directly related to concentration of particles. Increase in pressure causes increase in concentration of the particles.
340 ms
I got it right and I hope you do as well