Answer: the increase in the external resistor will affect and decrease the current in the circuit.
Explanation: A battery has it own internal resistance, r, and given an external resistor of resistance, R, the equation of typical of Ohm's law giving the flow of current is
E = IR + Ir = I(R + r)........(1)
Where IR is the potential difference flowing in the external circuit and Or is the lost voltage due to internal resistance of battery. From (1)
I = E/(R + r)
As R increases, and E, r remain constant, the value (R + r) increases, hence the value of current, I, in the external circuit decreases.
Answer:
A centrifugal clutch works, as the name suggests, through centrifugal force.
One of the most common methods is by mounting the clutch onto the parallel or taper crank shaft of the engine.
When the crank shaft rotates the shaft of the clutch rotates at the same speed as the engine
Answer:
A mock-up
Explanation:
It is made of cheap and easy to access parts.
Answer:
gauge pressure is 133 kPa
Explanation:
given data
initial temperature T1 = 27°C = 300 K
gauge pressure = 300 kPa = 300 × 10³ Pa
atmospheric pressure = 1 atm
final temperature T2 = 77°C = 350 K
to find out
final pressure
solution
we know that gauge pressure is = absolute pressure - atmospheric pressure so
P (gauge ) = 300 × 10³ Pa - 1 ×
Pa
P (gauge ) = 2 ×
Pa
so from idea gas equation
................1
so
P2 = 2.33 ×
Pa
so gauge pressure = absolute pressure - atmospheric pressure
gauge pressure = 2.33 ×
- 1.0 ×
gauge pressure = 1.33 ×
Pa
so gauge pressure is 133 kPa
Answer:
$$\begin{align*}
P(Y−X=m|Y>X)=∑kP(Y−X=m,X=k|Y>X)=∑kP(Y−X=m|X=k,Y>X)P(X=k|Y>X)=∑kP(Y−k=m|Y>k)P(X=k|Y>X).
Explanation:
P(Y−X=m|Y>X)=∑kP(Y−X=m,X=k|Y>X)=∑kP(Y−X=m|X=k,Y>X)P(X=k|Y>X)=∑kP(Y−k=m|Y>k)P(X=k|Y>X).