Photochemical smog is formed when primary air pollutants interact with sunlight.
Photochemical smog is the result of the reaction between pollutants like nitrogen oxides (NO), sunlight and volatile organic compound (VOC) in the atmosphere. The sources of NO are car exhaust, coal power plants, factory emissions, etc. This type of smog is also known by the name Los Angeles smog.
Air pollutants are the particles present dissolved in the air, which when inhaled by the organisms can cause serious health issues. These pollutants are :ozone, particulate matter, gaseous oxides, etc. These pollutants majorly affect the respiratory system of the humans.
Therefore, photochemical smog is a form of pollution created when vehicle exhaust interacts with sunlight.
To know more about photochemical smog, here: brainly.com/question/15728274
#SPJ4
<span>At the periphery of a hurricane the air is sinking, and several kilometers above the surface, in the eye, the air is sinking. </span>
Answer:
- The magnitude of the vector
is 107.76 m
Explanation:
To find the components of the vectors we can use:
![\vec{A} = | \vec{A} | \ ( \ cos(\theta) \ , \ sin (\theta) \ )](https://tex.z-dn.net/?f=%20%5Cvec%7BA%7D%20%3D%20%7C%20%5Cvec%7BA%7D%20%7C%20%5C%20%28%20%5C%20cos%28%5Ctheta%29%20%5C%20%2C%20%5C%20sin%20%28%5Ctheta%29%20%5C%20%29)
where
is the magnitude of the vector, and θ is the angle over the positive x axis.
The negative x axis is displaced 180 ° over the positive x axis, so, we can take:
![\vec{A} = 56.0 \ m \ ( \ cos( 180 \° + 30 \°) \ , \ sin (180 \° + 30 \°) \ )](https://tex.z-dn.net/?f=%20%5Cvec%7BA%7D%20%3D%2056.0%20%5C%20m%20%5C%20%28%20%5C%20cos%28%20180%20%5C%C2%B0%20%2B%2030%20%5C%C2%B0%29%20%5C%20%2C%20%5C%20sin%20%28180%20%5C%C2%B0%20%2B%2030%20%5C%C2%B0%29%20%5C%20%29)
![\vec{A} = 56.0 \ m \ ( \ cos( 210 \°) \ , \ sin (210 \°) \ )](https://tex.z-dn.net/?f=%20%5Cvec%7BA%7D%20%3D%2056.0%20%5C%20m%20%5C%20%28%20%5C%20cos%28%20210%20%5C%C2%B0%29%20%5C%20%2C%20%5C%20sin%20%28210%20%5C%C2%B0%29%20%5C%20%29)
![\vec{A} = ( \ -48.497 \ m \ , \ - 28 \ m \ )](https://tex.z-dn.net/?f=%20%5Cvec%7BA%7D%20%3D%20%28%20%5C%20-48.497%20%5C%20m%20%5C%20%2C%20%5C%20-%2028%20%5C%20m%20%5C%20%29)
![\vec{B} = 82.0 \ m \ ( \ cos( 180 \° - 49 \°) \ , \ sin (180 \° - 49 \°) \ )](https://tex.z-dn.net/?f=%20%5Cvec%7BB%7D%20%3D%2082.0%20%5C%20m%20%5C%20%28%20%5C%20cos%28%20180%20%5C%C2%B0%20-%2049%20%5C%C2%B0%29%20%5C%20%2C%20%5C%20sin%20%28180%20%5C%C2%B0%20-%2049%20%5C%C2%B0%29%20%5C%20%29)
![\vec{B} = 82.0 \ m \ ( \ cos( 131 \°) \ , \ sin (131 \°) \ )](https://tex.z-dn.net/?f=%20%5Cvec%7BB%7D%20%3D%2082.0%20%5C%20m%20%5C%20%28%20%5C%20cos%28%20131%20%5C%C2%B0%29%20%5C%20%2C%20%5C%20sin%20%28131%20%5C%C2%B0%29%20%5C%20%29)
![\vec{B} = ( \ -53.797 \ m \ , \ 61.886\ m \ )](https://tex.z-dn.net/?f=%20%5Cvec%7BB%7D%20%3D%20%28%20%5C%20-53.797%20%5C%20m%20%5C%20%2C%20%5C%2061.886%5C%20m%20%5C%20%29)
Now, we can perform vector addition. Taking two vectors, the vector addition is performed:
![(a_x,a_y) + (b_x,b_y) = (a_x+b_x,a_y+b_y)](https://tex.z-dn.net/?f=%28a_x%2Ca_y%29%20%2B%20%28b_x%2Cb_y%29%20%3D%20%28a_x%2Bb_x%2Ca_y%2Bb_y%29)
So, for our vectors:
![\vec{C} = ( \ -48.497 \ m \ , \ - 28 \ m \ ) + ( \ -53.797 \ m \ , ) = ( \ -48.497 \ m \ -53.797 \ m , \ - 28 \ m \ + \ 61.886\ m \ )](https://tex.z-dn.net/?f=%20%5Cvec%7BC%7D%20%3D%20%28%20%5C%20-48.497%20%5C%20m%20%5C%20%2C%20%5C%20-%2028%20%5C%20m%20%5C%20%29%20%2B%20%28%20%5C%20-53.797%20%5C%20m%20%5C%20%2C%20%20%29%20%3D%20%28%20%5C%20-48.497%20%5C%20m%20%5C%20-53.797%20%5C%20m%20%2C%20%5C%20-%2028%20%5C%20m%20%5C%20%2B%20%5C%2061.886%5C%20m%20%5C%20%29)
![\vec{C} = ( \ - 102.294 \ m , \ 33.886 m \ )](https://tex.z-dn.net/?f=%20%5Cvec%7BC%7D%20%3D%20%28%20%5C%20-%20102.294%20%5C%20m%20%2C%20%5C%2033.886%20m%20%5C%20%29)
To find the magnitude of this vector, we can use the Pythagorean Theorem
![|\vec{C}| = \sqrt{C_x^2 + C_y^2}](https://tex.z-dn.net/?f=%20%7C%5Cvec%7BC%7D%7C%20%3D%20%5Csqrt%7BC_x%5E2%20%2B%20C_y%5E2%7D%20)
![|\vec{C}| = \sqrt{(- 102.294 \ m)^2 + (\ 33.886 m \)^2}](https://tex.z-dn.net/?f=%20%7C%5Cvec%7BC%7D%7C%20%3D%20%5Csqrt%7B%28-%20102.294%20%5C%20m%29%5E2%20%2B%20%28%5C%2033.886%20m%20%5C%29%5E2%7D%20)
![|\vec{C}| =107.76 m](https://tex.z-dn.net/?f=%20%7C%5Cvec%7BC%7D%7C%20%3D107.76%20m%20)
And this is the magnitude we are looking for.
Mass of yellow train, my = 100 kg
Initial Velocity of yellow train, = 8 m/s
mass of orange train = 200 kg
Initial Velocity of orange train = -1 m/s (since it moves opposite direction to the yellow train, we will put negative to show the opposite direction)
To calculate the initial momentum of both trains, we will use the principle of conservation of momentum which
The sum of initial momentum = the sum of final momentum
Since the question only wants the sum of initial momentum,
(100)(8) + (200)(-1) = 600 m/s