Answer:
The ball fell 275.625 meters after 7.5 seconds
Explanation:
<u>Free fall
</u>
If an object is left on free air (no friction), it describes an accelerated motion in the vertical direction, powered exclusively by the acceleration of gravity. The formulas needed to compute the different magnitudes involved are


Where
is the final speed of the object in free fall, assumed positive downwards, t is the time elapsed since the release and y is the vertical distance traveled by the object
The ball was dropped from a cliff. We need to calculate the vertical distance the ball went down in t=7.5 seconds. We'll use the formula


Let both the balls have the same mass equals to m.
Let
and
be the speed of the ball1 and the ball2 respectively, such that

Assuming that both the balls are at the same level with respect to the ground, so let h be the height from the ground.
The total energy of ball1= Kinetic energy of ball1 + Potential energy of ball1. The Kinetic energy of any object moving with speed,
, is 
and the potential energy is due to the change in height is
[where
is the acceleration due to gravity]
So, the total energy of ball1,

and the total energy of ball1,
.
Here, the potential energy for both the balls are the same, but the kinetic energy of the ball1 is higher the ball2 as the ball1 have the higher speed, refer equation (i)
So, 
Now, from equations (ii) and (iii)
The total energy of ball1 hi higher than the total energy of ball2.
Metals in general, are good heat conductors
They were going at a velocity 4.07m/s
<u>Explanation:</u>
Distance s =5 m
initial velocity u= 0.8 m/s
Acceleration a =1.6m/s2
We have to calculate the velocity with which they were going afterwards i.e final velocity.
Use the equation of motion

They were going with a velocity 4.07 m/s afterwards.