Answer:
ΔL = 3.82 10⁻⁴ m
Explanation:
This is a thermal expansion exercise
ΔL = α L₀ ΔT
ΔT = T_f - T₀
where ΔL is the change in length and ΔT is the change in temperature
Let's reduce the length to SI units
L₀ = 90.5 mm (1m / 1000 mm) = 0.0905 m
let's calculate
ΔL = 25.10⁻⁶ 0.0905 (154.6 - (14.4))
ΔL = 3.8236 10⁻⁴ m
using the criterion of three significant figures
ΔL = 3.82 10⁻⁴ m
Answer: 5.5m/s
Explanation:
vf=vi+at
vf= 4.0m/s + (0.50m/s^2)(3.0s)
Answer:
Mass of the box is 25kg
Explanation:
From Newton's second law of motion
Force= mass. acceleration
With the symbol
F=m.a
m=F/a m=(50N)/(2m/s²)
m=25kg
-- The train starts at 23 m/s and slows down by 0.25 m/s every second.
So it'll take (23/0.25) = 92 seconds to stop.
-- Its average speed during that time will be (1/2)(23+0) = 11.5 m/s
-- Moving at an average speed of 11.5 m/s for 92 sec, the train will cover
(11.5 m/s) x (92 sec) = <em>1,058 meters</em> .