Answer:
The work done on the Frisbee is 1.36 J.
Explanation:
Given that,
Mass of Frisbee, m = 115 g = 0.115 kg
Initial speed of Frisbee, u = 12 m/s at a point 1 m above the ground
Final speed of Frisbee , v = 10.9674 m/s when it has reached a height of 2.00 m. Let W is the work done on the Frisbee by its weight. According to work energy theorem, the work done is equal to the change in its kinetic energy. So,

So, the work done on the Frisbee is 1.36 J. Hence, this is the required solution.
Distance = speed x time
distance = 116 x 10
distance = 1160 m
F=ma=m(change in velocity/change in time)
Number 1
F=ma
F=55kg(1.1ms^-1/1.6s)=37.8N
Number 2
F=ma
F=0.440kg(10ms^-1/0.02s)=220N
Number 3
F=ma
F=1400kg(15ms^-1/0.73s)=2.88*10^3N or 28,767N
Any questions please feel free to ask.
Answer:4.39 s
Explanation:
Given
initial velocity 
acceleration 
velocity acquired by sled in
time


distance traveled by sled in 



distance traveled in
time with velocity 




----1


substitute the value of
in 1
we get

thus 
